Spaces:
Runtime error
Runtime error
| ### 1. Imports and class names setup ### | |
| ### 1. Imports and class names setup ### | |
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_mobilenet_model | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| # Setup class names | |
| class_names = ['bacterial', 'blast', 'brownspot', 'tungro'] | |
| ### 2. Model and transforms preparation ### | |
| mobilenet, manual_transforms = create_mobilenet_model( | |
| num_classes=4 | |
| ) | |
| mobilenet.load_state_dict( | |
| torch.load( | |
| f="mobilenet_5_epochs.pth", | |
| map_location=torch.device("cpu"), | |
| ) | |
| ) | |
| ### 3. Predict function ### | |
| def predict(img) -> Tuple[Dict, float]: | |
| start_time = timer() | |
| img = manual_transforms(img).unsqueeze(0) | |
| mobilenet.eval() | |
| with torch.inference_mode(): | |
| pred_probs = torch.softmax(mobilenet(img), dim=1) | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
| pred_time = round(timer() - start_time, 5) | |
| return pred_labels_and_probs, pred_time | |
| ### 4. Gradio app ### | |
| # Create a Blocks app (only one!) | |
| with gr.Blocks() as gradio_app: | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center'> | |
| Rice Disease Classification - MobileNet Model | |
| </h1> | |
| """ | |
| ) | |
| gr.HTML( | |
| """ | |
| <h3 style='text-align: center'> | |
| Follow me for more! | |
| <!-- <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | --> | |
| <a href='https://github.com/ExplorerGumel' target='_blank'>Github</a> | | |
| <a href='https://www.linkedin.com/in/munzali-alhassan/' target='_blank'>Linkedin</a> | | |
| <!-- <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a> --> | |
| </h3> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil", label="Upload Image") | |
| infer = gr.Button(value="Predict") | |
| # Examples linked to the input component 'image' | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| gr.Examples( | |
| examples=example_list, | |
| inputs=[image] # Pass the actual input component | |
| ) | |
| with gr.Column(): | |
| label = gr.Label(num_top_classes=4, label="Predictions") | |
| pred_time = gr.Number(label="Prediction Time (s)") | |
| infer.click( | |
| fn=predict, | |
| inputs=[image], | |
| outputs=[label, pred_time] | |
| ) | |
| # Launch the app | |
| gradio_app.launch(debug=True, share=True) | |
| # gradio_app.launch(debug=True, share=True) | |
| # # Create title, description and article strings | |
| # title = "RICE DISEASES CLASSIFICATION" | |
| # description = "A MobileNetV2 feature extractor computer vision model to classify images of Rice diseases." | |
| # article = "Created by Munzali Alhassan." | |
| # # Create examples list from "examples/" directory | |
| # example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| # # Create the Gradio demo | |
| # demo = gr.Interface(fn=predict, # mapping function from input to output | |
| # inputs=gr.Image(type="pil"), # what are the inputs? | |
| # outputs=[gr.Label(num_top_classes=4, label="Predictions"), # what are the outputs? | |
| # gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
| # # Create examples list from "examples/" directory | |
| # examples=example_list, | |
| # title=title, | |
| # description=description, | |
| # article=article) | |
| # # Launch the demo! | |
| # demo.launch(share=True) | |