Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import tempfile | |
import os | |
st.set_page_config(page_title="Document QA Bot") | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
def process_text(text): | |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = splitter.create_documents([text]) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
return FAISS.from_documents(chunks, embeddings) | |
def process_pdf(file): | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: | |
tmp_file.write(file.getvalue()) | |
loader = PyPDFLoader(tmp_file.name) | |
pages = loader.load() | |
os.unlink(tmp_file.name) | |
return process_text('\n'.join(page.page_content for page in pages)) | |
st.title("Document QA Bot") | |
uploaded_file = st.file_uploader("Upload Document", type=["txt", "pdf"]) | |
if uploaded_file: | |
with st.spinner("Processing document..."): | |
if uploaded_file.type == "text/plain": | |
text = uploaded_file.getvalue().decode() | |
st.session_state.vector_store = process_text(text) | |
else: | |
st.session_state.vector_store = process_pdf(uploaded_file) | |
st.success("Document processed!") | |
if st.session_state.vector_store: | |
if question := st.chat_input("Ask a question about the document:"): | |
results = st.session_state.vector_store.similarity_search(question) | |
context = "\n".join(doc.page_content for doc in results) | |
st.chat_message("user").write(question) | |
st.chat_message("assistant").write(context) |