Commit
·
be6d3d6
1
Parent(s):
bf6d44e
- hf_backend.py +63 -40
hf_backend.py
CHANGED
|
@@ -10,46 +10,29 @@ from config import settings
|
|
| 10 |
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
-
# ---------- logging helpers ----------
|
| 14 |
def _snippet(txt: str, n: int = 800) -> str:
|
| 15 |
if not isinstance(txt, str):
|
| 16 |
return f"<non-str:{type(txt)}>"
|
| 17 |
return txt if len(txt) <= n else txt[:n] + f"... <+{len(txt)-n} chars>"
|
| 18 |
|
| 19 |
-
def _json_snippet(obj: Any, n: int = 800) -> str:
|
| 20 |
-
try:
|
| 21 |
-
s = json.dumps(obj, ensure_ascii=False, indent=2)
|
| 22 |
-
except Exception:
|
| 23 |
-
s = str(obj)
|
| 24 |
-
return _snippet(s, n)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# ---------- HF Spaces imports ----------
|
| 28 |
try:
|
| 29 |
import spaces
|
| 30 |
from spaces.zero import client as zero_client
|
| 31 |
except ImportError:
|
| 32 |
spaces, zero_client = None, None
|
| 33 |
|
| 34 |
-
# ---------- Model setup ----------
|
| 35 |
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
|
| 36 |
logger.info(f"[init] MODEL_ID={MODEL_ID}")
|
| 37 |
|
| 38 |
tokenizer, load_error = None, None
|
| 39 |
try:
|
| 40 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 41 |
-
MODEL_ID,
|
| 42 |
-
trust_remote_code=True,
|
| 43 |
-
use_fast=False,
|
| 44 |
-
)
|
| 45 |
has_template = hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None)
|
| 46 |
logger.info(f"[init] tokenizer loaded. chat_template={'yes' if has_template else 'no'}")
|
| 47 |
except Exception as e:
|
| 48 |
load_error = f"Failed to load tokenizer: {e}"
|
| 49 |
logger.exception(load_error)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
# ---------- helpers ----------
|
| 53 |
def _pick_cpu_dtype() -> torch.dtype:
|
| 54 |
try:
|
| 55 |
if hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported") and torch.cpu.is_bf16_supported():
|
|
@@ -60,11 +43,8 @@ def _pick_cpu_dtype() -> torch.dtype:
|
|
| 60 |
logger.info("[dtype] fallback -> torch.float32")
|
| 61 |
return torch.float32
|
| 62 |
|
| 63 |
-
|
| 64 |
-
# ---------- global cache ----------
|
| 65 |
_MODEL_CACHE: Dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {}
|
| 66 |
|
| 67 |
-
|
| 68 |
def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, torch.dtype]:
|
| 69 |
key = (device, dtype)
|
| 70 |
if key in _MODEL_CACHE:
|
|
@@ -120,8 +100,40 @@ def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, t
|
|
| 120 |
_MODEL_CACHE[(device, eff_dtype)] = model
|
| 121 |
return model, eff_dtype
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
# ---------- Chat Backend ----------
|
| 125 |
class HFChatBackend(ChatBackend):
|
| 126 |
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
|
| 127 |
if load_error:
|
|
@@ -130,16 +142,15 @@ class HFChatBackend(ChatBackend):
|
|
| 130 |
messages = request.get("messages", [])
|
| 131 |
tools = request.get("tools")
|
| 132 |
temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
|
| 133 |
-
|
| 134 |
|
| 135 |
rid = f"chatcmpl-hf-{int(time.time())}"
|
| 136 |
now = int(time.time())
|
| 137 |
|
| 138 |
-
logger.info(f"[req] rid={rid} temp={temperature}
|
| 139 |
f"msgs={len(messages)} tools={'yes' if tools else 'no'} "
|
| 140 |
f"spaces={'yes' if spaces else 'no'} cuda={'yes' if torch.cuda.is_available() else 'no'}")
|
| 141 |
|
| 142 |
-
# X-IP-Token for ZeroGPU
|
| 143 |
x_ip_token = request.get("x_ip_token")
|
| 144 |
if x_ip_token and zero_client:
|
| 145 |
zero_client.HEADERS["X-IP-Token"] = x_ip_token
|
|
@@ -150,11 +161,11 @@ class HFChatBackend(ChatBackend):
|
|
| 150 |
try:
|
| 151 |
prompt = tokenizer.apply_chat_template(
|
| 152 |
messages,
|
| 153 |
-
tools=tools,
|
| 154 |
tokenize=False,
|
| 155 |
add_generation_prompt=True,
|
| 156 |
)
|
| 157 |
-
logger.info(f"[prompt] built via chat_template. len={len(prompt)}\n{_snippet(prompt,
|
| 158 |
except Exception as e:
|
| 159 |
logger.warning(f"[prompt] chat_template failed -> fallback. err={e}")
|
| 160 |
prompt = messages[-1]["content"] if messages else "(empty)"
|
|
@@ -166,11 +177,25 @@ class HFChatBackend(ChatBackend):
|
|
| 166 |
def _run_once(prompt: str, device: str, req_dtype: torch.dtype) -> str:
|
| 167 |
model, eff_dtype = _get_model(device, req_dtype)
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
with torch.inference_mode():
|
| 176 |
if device != "cpu":
|
|
@@ -179,25 +204,26 @@ class HFChatBackend(ChatBackend):
|
|
| 179 |
autocast_ctx = torch.cpu.amp.autocast(dtype=torch.bfloat16) if eff_dtype == torch.bfloat16 else nullcontext()
|
| 180 |
|
| 181 |
gen_kwargs = dict(
|
| 182 |
-
max_new_tokens=
|
| 183 |
-
temperature=
|
| 184 |
-
do_sample=
|
| 185 |
use_cache=True,
|
|
|
|
|
|
|
| 186 |
)
|
| 187 |
logger.info(f"[gen] kwargs={gen_kwargs}")
|
| 188 |
|
| 189 |
with autocast_ctx:
|
| 190 |
outputs = model.generate(**inputs, **gen_kwargs)
|
| 191 |
|
| 192 |
-
#
|
| 193 |
-
input_len = input_ids.shape[-1]
|
| 194 |
generated_ids = outputs[0][input_len:]
|
| 195 |
logger.info(f"[gen] new_tokens={generated_ids.shape[-1]}")
|
| 196 |
text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
|
| 197 |
logger.info(f"[gen] text len={len(text)}\n{_snippet(text, 1200)}")
|
| 198 |
return text
|
| 199 |
|
| 200 |
-
# Dispatch with or without ZeroGPU
|
| 201 |
if spaces:
|
| 202 |
@spaces.GPU(duration=120)
|
| 203 |
def run_once(prompt: str) -> str:
|
|
@@ -206,13 +232,11 @@ class HFChatBackend(ChatBackend):
|
|
| 206 |
return _run_once(prompt, device="cuda", req_dtype=torch.float16)
|
| 207 |
logger.info("[path] ZeroGPU but no CUDA -> CPU fallback")
|
| 208 |
return _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
|
| 209 |
-
|
| 210 |
text = run_once(prompt)
|
| 211 |
else:
|
| 212 |
logger.info("[path] CPU-only runtime")
|
| 213 |
text = _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
|
| 214 |
|
| 215 |
-
# Emit single OpenAI-style chunk
|
| 216 |
chunk = {
|
| 217 |
"id": rid,
|
| 218 |
"object": "chat.completion.chunk",
|
|
@@ -226,7 +250,6 @@ class HFChatBackend(ChatBackend):
|
|
| 226 |
yield chunk
|
| 227 |
|
| 228 |
|
| 229 |
-
# ---------- Stub Images Backend ----------
|
| 230 |
class StubImagesBackend(ImagesBackend):
|
| 231 |
async def generate_b64(self, request: Dict[str, Any]) -> str:
|
| 232 |
logger.warning("Image generation not supported in HF backend.")
|
|
|
|
| 10 |
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
|
|
|
| 13 |
def _snippet(txt: str, n: int = 800) -> str:
|
| 14 |
if not isinstance(txt, str):
|
| 15 |
return f"<non-str:{type(txt)}>"
|
| 16 |
return txt if len(txt) <= n else txt[:n] + f"... <+{len(txt)-n} chars>"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
try:
|
| 19 |
import spaces
|
| 20 |
from spaces.zero import client as zero_client
|
| 21 |
except ImportError:
|
| 22 |
spaces, zero_client = None, None
|
| 23 |
|
|
|
|
| 24 |
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
|
| 25 |
logger.info(f"[init] MODEL_ID={MODEL_ID}")
|
| 26 |
|
| 27 |
tokenizer, load_error = None, None
|
| 28 |
try:
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
has_template = hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None)
|
| 31 |
logger.info(f"[init] tokenizer loaded. chat_template={'yes' if has_template else 'no'}")
|
| 32 |
except Exception as e:
|
| 33 |
load_error = f"Failed to load tokenizer: {e}"
|
| 34 |
logger.exception(load_error)
|
| 35 |
|
|
|
|
|
|
|
| 36 |
def _pick_cpu_dtype() -> torch.dtype:
|
| 37 |
try:
|
| 38 |
if hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported") and torch.cpu.is_bf16_supported():
|
|
|
|
| 43 |
logger.info("[dtype] fallback -> torch.float32")
|
| 44 |
return torch.float32
|
| 45 |
|
|
|
|
|
|
|
| 46 |
_MODEL_CACHE: Dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {}
|
| 47 |
|
|
|
|
| 48 |
def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, torch.dtype]:
|
| 49 |
key = (device, dtype)
|
| 50 |
if key in _MODEL_CACHE:
|
|
|
|
| 100 |
_MODEL_CACHE[(device, eff_dtype)] = model
|
| 101 |
return model, eff_dtype
|
| 102 |
|
| 103 |
+
def _max_context(model, tokenizer) -> int:
|
| 104 |
+
# Prefer model config; fallback to tokenizer hint
|
| 105 |
+
mc = getattr(getattr(model, "config", None), "max_position_embeddings", None)
|
| 106 |
+
if isinstance(mc, int) and mc > 0:
|
| 107 |
+
return mc
|
| 108 |
+
tk = getattr(tokenizer, "model_max_length", None)
|
| 109 |
+
if isinstance(tk, int) and tk > 0 and tk < 10**12:
|
| 110 |
+
return tk
|
| 111 |
+
return 32768 # safe default for Qwen3
|
| 112 |
+
|
| 113 |
+
def _build_inputs_with_truncation(prompt: str, device: str, max_new_tokens: int, model, tokenizer):
|
| 114 |
+
toks = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
| 115 |
+
input_ids = toks["input_ids"]
|
| 116 |
+
attn = toks.get("attention_mask", None)
|
| 117 |
+
|
| 118 |
+
ctx = _max_context(model, tokenizer)
|
| 119 |
+
limit = max(8, ctx - max_new_tokens)
|
| 120 |
+
in_len = input_ids.shape[-1]
|
| 121 |
+
if in_len > limit:
|
| 122 |
+
# left-truncate to fit context
|
| 123 |
+
cut = in_len - limit
|
| 124 |
+
input_ids = input_ids[:, -limit:]
|
| 125 |
+
if attn is not None:
|
| 126 |
+
attn = attn[:, -limit:]
|
| 127 |
+
logger.warning(f"[truncate] prompt_tokens={in_len} > limit={limit}. truncated_left_by={cut} to fit ctx={ctx}, new_input={input_ids.shape[-1]}, max_new={max_new_tokens}")
|
| 128 |
+
|
| 129 |
+
inputs = {"input_ids": input_ids}
|
| 130 |
+
if attn is not None:
|
| 131 |
+
inputs["attention_mask"] = attn
|
| 132 |
+
|
| 133 |
+
# move to device
|
| 134 |
+
inputs = {k: v.to(device) if hasattr(v, "to") else v for k, v in inputs.items()}
|
| 135 |
+
return inputs, in_len, ctx, limit
|
| 136 |
|
|
|
|
| 137 |
class HFChatBackend(ChatBackend):
|
| 138 |
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
|
| 139 |
if load_error:
|
|
|
|
| 142 |
messages = request.get("messages", [])
|
| 143 |
tools = request.get("tools")
|
| 144 |
temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
|
| 145 |
+
req_max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512))
|
| 146 |
|
| 147 |
rid = f"chatcmpl-hf-{int(time.time())}"
|
| 148 |
now = int(time.time())
|
| 149 |
|
| 150 |
+
logger.info(f"[req] rid={rid} temp={temperature} req_max_tokens={req_max_tokens} "
|
| 151 |
f"msgs={len(messages)} tools={'yes' if tools else 'no'} "
|
| 152 |
f"spaces={'yes' if spaces else 'no'} cuda={'yes' if torch.cuda.is_available() else 'no'}")
|
| 153 |
|
|
|
|
| 154 |
x_ip_token = request.get("x_ip_token")
|
| 155 |
if x_ip_token and zero_client:
|
| 156 |
zero_client.HEADERS["X-IP-Token"] = x_ip_token
|
|
|
|
| 161 |
try:
|
| 162 |
prompt = tokenizer.apply_chat_template(
|
| 163 |
messages,
|
| 164 |
+
#tools=tools,
|
| 165 |
tokenize=False,
|
| 166 |
add_generation_prompt=True,
|
| 167 |
)
|
| 168 |
+
logger.info(f"[prompt] built via chat_template. len={len(prompt)}\n{_snippet(prompt, 800)}")
|
| 169 |
except Exception as e:
|
| 170 |
logger.warning(f"[prompt] chat_template failed -> fallback. err={e}")
|
| 171 |
prompt = messages[-1]["content"] if messages else "(empty)"
|
|
|
|
| 177 |
def _run_once(prompt: str, device: str, req_dtype: torch.dtype) -> str:
|
| 178 |
model, eff_dtype = _get_model(device, req_dtype)
|
| 179 |
|
| 180 |
+
# Clamp max_new_tokens for CPU to prevent stalls
|
| 181 |
+
if device == "cpu":
|
| 182 |
+
max_new_tokens = min(req_max_tokens, 512)
|
| 183 |
+
else:
|
| 184 |
+
max_new_tokens = req_max_tokens
|
| 185 |
+
|
| 186 |
+
# Build inputs with context-aware truncation
|
| 187 |
+
inputs, orig_in_len, ctx, limit = _build_inputs_with_truncation(prompt, device, max_new_tokens, model, tokenizer)
|
| 188 |
+
|
| 189 |
+
logger.info(f"[gen] device={device} dtype={eff_dtype} input_tokens={inputs['input_ids'].shape[-1]} "
|
| 190 |
+
f"(orig={orig_in_len}) max_ctx={ctx} limit_for_input={limit} max_new_tokens={max_new_tokens}")
|
| 191 |
|
| 192 |
+
# Sampling settings
|
| 193 |
+
do_sample = temperature > 1e-6
|
| 194 |
+
temp = max(1e-5, temperature) if do_sample else 0.0
|
| 195 |
+
|
| 196 |
+
# ids
|
| 197 |
+
eos_id = tokenizer.eos_token_id
|
| 198 |
+
pad_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else eos_id
|
| 199 |
|
| 200 |
with torch.inference_mode():
|
| 201 |
if device != "cpu":
|
|
|
|
| 204 |
autocast_ctx = torch.cpu.amp.autocast(dtype=torch.bfloat16) if eff_dtype == torch.bfloat16 else nullcontext()
|
| 205 |
|
| 206 |
gen_kwargs = dict(
|
| 207 |
+
max_new_tokens=max_new_tokens,
|
| 208 |
+
temperature=temp,
|
| 209 |
+
do_sample=do_sample,
|
| 210 |
use_cache=True,
|
| 211 |
+
eos_token_id=eos_id,
|
| 212 |
+
pad_token_id=pad_id,
|
| 213 |
)
|
| 214 |
logger.info(f"[gen] kwargs={gen_kwargs}")
|
| 215 |
|
| 216 |
with autocast_ctx:
|
| 217 |
outputs = model.generate(**inputs, **gen_kwargs)
|
| 218 |
|
| 219 |
+
# Slice generated continuation only
|
| 220 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 221 |
generated_ids = outputs[0][input_len:]
|
| 222 |
logger.info(f"[gen] new_tokens={generated_ids.shape[-1]}")
|
| 223 |
text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
|
| 224 |
logger.info(f"[gen] text len={len(text)}\n{_snippet(text, 1200)}")
|
| 225 |
return text
|
| 226 |
|
|
|
|
| 227 |
if spaces:
|
| 228 |
@spaces.GPU(duration=120)
|
| 229 |
def run_once(prompt: str) -> str:
|
|
|
|
| 232 |
return _run_once(prompt, device="cuda", req_dtype=torch.float16)
|
| 233 |
logger.info("[path] ZeroGPU but no CUDA -> CPU fallback")
|
| 234 |
return _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
|
|
|
|
| 235 |
text = run_once(prompt)
|
| 236 |
else:
|
| 237 |
logger.info("[path] CPU-only runtime")
|
| 238 |
text = _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
|
| 239 |
|
|
|
|
| 240 |
chunk = {
|
| 241 |
"id": rid,
|
| 242 |
"object": "chat.completion.chunk",
|
|
|
|
| 250 |
yield chunk
|
| 251 |
|
| 252 |
|
|
|
|
| 253 |
class StubImagesBackend(ImagesBackend):
|
| 254 |
async def generate_b64(self, request: Dict[str, Any]) -> str:
|
| 255 |
logger.warning("Image generation not supported in HF backend.")
|