Commit
·
60a9595
1
Parent(s):
5b32c71
- hf_backend.py +42 -63
hf_backend.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
# hf_backend.py
|
| 2 |
-
import time, logging
|
| 3 |
from typing import Any, Dict, AsyncIterable
|
| 4 |
|
| 5 |
import torch
|
|
@@ -7,23 +7,24 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 7 |
from backends_base import ChatBackend, ImagesBackend
|
| 8 |
from config import settings
|
| 9 |
|
|
|
|
|
|
|
| 10 |
try:
|
| 11 |
import spaces
|
| 12 |
-
from spaces.zero
|
| 13 |
except ImportError:
|
| 14 |
-
spaces,
|
| 15 |
-
|
| 16 |
-
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
| 18 |
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
|
| 19 |
-
logger.info(f"
|
| 20 |
|
| 21 |
tokenizer, model, load_error = None, None, None
|
| 22 |
try:
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
MODEL_ID,
|
| 26 |
-
torch_dtype=torch.float32,
|
| 27 |
trust_remote_code=True,
|
| 28 |
)
|
| 29 |
model.eval()
|
|
@@ -32,22 +33,7 @@ except Exception as e:
|
|
| 32 |
logger.exception(load_error)
|
| 33 |
|
| 34 |
|
| 35 |
-
|
| 36 |
-
if torch.cuda.is_available():
|
| 37 |
-
return "cuda"
|
| 38 |
-
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
|
| 39 |
-
return "mps"
|
| 40 |
-
return "cpu"
|
| 41 |
-
|
| 42 |
-
def pick_dtype(device: str) -> torch.dtype:
|
| 43 |
-
if device == "cuda":
|
| 44 |
-
major, _ = torch.cuda.get_device_capability()
|
| 45 |
-
return torch.bfloat16 if major >= 8 else torch.float16
|
| 46 |
-
if device == "mps":
|
| 47 |
-
return torch.float16
|
| 48 |
-
return torch.float32
|
| 49 |
-
|
| 50 |
-
|
| 51 |
class HFChatBackend(ChatBackend):
|
| 52 |
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
|
| 53 |
if load_error:
|
|
@@ -61,19 +47,24 @@ class HFChatBackend(ChatBackend):
|
|
| 61 |
rid = f"chatcmpl-hf-{int(time.time())}"
|
| 62 |
now = int(time.time())
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
| 65 |
x_ip_token = request.get("x_ip_token")
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
logger.info("Using X-IP-Token from request for ZeroGPU attribution")
|
| 70 |
-
|
| 71 |
-
def _gpu_inference_fn(prompt: str) -> str:
|
| 72 |
-
device = pick_device()
|
| 73 |
-
dtype = pick_dtype(device)
|
| 74 |
-
model.to(device=device, dtype=dtype).eval()
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
|
| 77 |
with torch.inference_mode(), torch.autocast(device_type=device, dtype=dtype):
|
| 78 |
outputs = model.generate(
|
| 79 |
**inputs,
|
|
@@ -83,35 +74,23 @@ class HFChatBackend(ChatBackend):
|
|
| 83 |
)
|
| 84 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
)
|
| 104 |
-
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 105 |
-
|
| 106 |
-
yield {
|
| 107 |
-
"id": rid,
|
| 108 |
-
"object": "chat.completion.chunk",
|
| 109 |
-
"created": now,
|
| 110 |
-
"model": MODEL_ID,
|
| 111 |
-
"choices": [
|
| 112 |
-
{"index": 0, "delta": {"content": text}, "finish_reason": "stop"}
|
| 113 |
-
],
|
| 114 |
-
}
|
| 115 |
class StubImagesBackend(ImagesBackend):
|
| 116 |
"""
|
| 117 |
Stub backend for images since HFChatBackend is text-only.
|
|
|
|
| 1 |
+
# hf_backend.py
|
| 2 |
+
import time, logging
|
| 3 |
from typing import Any, Dict, AsyncIterable
|
| 4 |
|
| 5 |
import torch
|
|
|
|
| 7 |
from backends_base import ChatBackend, ImagesBackend
|
| 8 |
from config import settings
|
| 9 |
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
try:
|
| 13 |
import spaces
|
| 14 |
+
from spaces.zero import client as zero_client
|
| 15 |
except ImportError:
|
| 16 |
+
spaces, zero_client = None, None
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# --- Model setup (CPU-safe load, real inference on GPU only) ---
|
| 19 |
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
|
| 20 |
+
logger.info(f"Preloading tokenizer for {MODEL_ID} on CPU (ZeroGPU safe)...")
|
| 21 |
|
| 22 |
tokenizer, model, load_error = None, None, None
|
| 23 |
try:
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
|
| 25 |
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
MODEL_ID,
|
| 27 |
+
torch_dtype=torch.float32, # dummy dtype for CPU preload
|
| 28 |
trust_remote_code=True,
|
| 29 |
)
|
| 30 |
model.eval()
|
|
|
|
| 33 |
logger.exception(load_error)
|
| 34 |
|
| 35 |
|
| 36 |
+
# ---------------- Chat Backend ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
class HFChatBackend(ChatBackend):
|
| 38 |
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
|
| 39 |
if load_error:
|
|
|
|
| 47 |
rid = f"chatcmpl-hf-{int(time.time())}"
|
| 48 |
now = int(time.time())
|
| 49 |
|
| 50 |
+
if not spaces:
|
| 51 |
+
raise RuntimeError("ZeroGPU (spaces) is required but not available!")
|
| 52 |
+
|
| 53 |
+
# --- Inject X-IP-Token into global headers ---
|
| 54 |
x_ip_token = request.get("x_ip_token")
|
| 55 |
+
if x_ip_token and zero_client:
|
| 56 |
+
zero_client.HEADERS["X-IP-Token"] = x_ip_token
|
| 57 |
+
logger.debug("Injected X-IP-Token into ZeroGPU headers")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# --- Define the GPU-only inference function ---
|
| 60 |
+
@spaces.GPU(duration=120)
|
| 61 |
+
def run_once(prompt: str) -> str:
|
| 62 |
+
device = "cuda" # force CUDA
|
| 63 |
+
dtype = torch.float16
|
| 64 |
+
|
| 65 |
+
model.to(device=device, dtype=dtype).eval()
|
| 66 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 67 |
+
|
| 68 |
with torch.inference_mode(), torch.autocast(device_type=device, dtype=dtype):
|
| 69 |
outputs = model.generate(
|
| 70 |
**inputs,
|
|
|
|
| 74 |
)
|
| 75 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 76 |
|
| 77 |
+
try:
|
| 78 |
+
text = run_once(prompt)
|
| 79 |
+
yield {
|
| 80 |
+
"id": rid,
|
| 81 |
+
"object": "chat.completion.chunk",
|
| 82 |
+
"created": now,
|
| 83 |
+
"model": MODEL_ID,
|
| 84 |
+
"choices": [
|
| 85 |
+
{"index": 0, "delta": {"content": text}, "finish_reason": "stop"}
|
| 86 |
+
],
|
| 87 |
+
}
|
| 88 |
+
except Exception:
|
| 89 |
+
logger.exception("HF inference failed")
|
| 90 |
+
raise
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# ---------------- Stub Images Backend ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
class StubImagesBackend(ImagesBackend):
|
| 95 |
"""
|
| 96 |
Stub backend for images since HFChatBackend is text-only.
|