Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
72880a2
1
Parent(s):
560df46
Refactor seed frame initialization in app.py to accept a 'sharp_split' parameter, allowing for dynamic data retrieval limits. Update related functions and session state handling to improve user input flexibility for DraftKings and FanDuel simulations.
Browse files
app.py
CHANGED
|
@@ -55,52 +55,56 @@ dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'sal
|
|
| 55 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 56 |
|
| 57 |
@st.cache_data(ttl = 600)
|
| 58 |
-
def init_DK_seed_frames():
|
| 59 |
|
| 60 |
collection = db["DK_NFL_seed_frame"]
|
| 61 |
-
cursor = collection.find()
|
| 62 |
|
| 63 |
raw_display = pd.DataFrame(list(cursor))
|
| 64 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 65 |
DK_seed = raw_display.to_numpy()
|
|
|
|
| 66 |
|
| 67 |
-
return
|
| 68 |
|
| 69 |
@st.cache_data(ttl = 600)
|
| 70 |
-
def init_DK_Secondary_seed_frames():
|
| 71 |
|
| 72 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
| 73 |
-
cursor = collection.find()
|
| 74 |
|
| 75 |
raw_display = pd.DataFrame(list(cursor))
|
| 76 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 77 |
DK_seed = raw_display.to_numpy()
|
|
|
|
| 78 |
|
| 79 |
-
return
|
| 80 |
|
| 81 |
@st.cache_data(ttl = 599)
|
| 82 |
-
def init_FD_seed_frames():
|
| 83 |
|
| 84 |
collection = db["FD_NFL_seed_frame"]
|
| 85 |
-
cursor = collection.find()
|
| 86 |
|
| 87 |
raw_display = pd.DataFrame(list(cursor))
|
| 88 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 89 |
FD_seed = raw_display.to_numpy()
|
|
|
|
| 90 |
|
| 91 |
-
return
|
| 92 |
|
| 93 |
@st.cache_data(ttl = 599)
|
| 94 |
-
def init_FD_Secondary_seed_frames():
|
| 95 |
|
| 96 |
collection = db["FD_NFL_Secondary_seed_frame"]
|
| 97 |
-
cursor = collection.find()
|
| 98 |
|
| 99 |
raw_display = pd.DataFrame(list(cursor))
|
| 100 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 101 |
FD_seed = raw_display.to_numpy()
|
|
|
|
| 102 |
|
| 103 |
-
return
|
| 104 |
|
| 105 |
@st.cache_data(ttl = 599)
|
| 106 |
def init_baselines():
|
|
@@ -146,11 +150,10 @@ def calculate_FD_value_frequencies(np_array):
|
|
| 146 |
return combined_array
|
| 147 |
|
| 148 |
@st.cache_data
|
| 149 |
-
def sim_contest(Sim_size, seed_frame, maps_dict,
|
| 150 |
SimVar = 1
|
| 151 |
Sim_Winners = []
|
| 152 |
-
fp_array = seed_frame
|
| 153 |
-
|
| 154 |
# Pre-vectorize functions
|
| 155 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
| 156 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
|
@@ -189,22 +192,17 @@ with tab2:
|
|
| 189 |
st.cache_data.clear()
|
| 190 |
for key in st.session_state.keys():
|
| 191 |
del st.session_state[key]
|
| 192 |
-
DK_seed = init_DK_seed_frames()
|
| 193 |
-
FD_seed = init_FD_seed_frames()
|
| 194 |
dk_raw, fd_raw = init_baselines()
|
| 195 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 196 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 197 |
|
| 198 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
|
| 199 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
|
|
|
|
|
|
| 200 |
if site_var1 == 'Draftkings':
|
| 201 |
-
if slate_var1 == 'Main Slate':
|
| 202 |
-
DK_seed = init_DK_seed_frames()
|
| 203 |
-
elif slate_var1 == 'Secondary Slate':
|
| 204 |
-
DK_seed = init_DK_Secondary_seed_frames()
|
| 205 |
-
|
| 206 |
-
raw_baselines = dk_raw
|
| 207 |
-
column_names = dk_columns
|
| 208 |
|
| 209 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
| 210 |
if team_var1 == 'Specific Teams':
|
|
@@ -219,13 +217,6 @@ with tab2:
|
|
| 219 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
| 220 |
|
| 221 |
elif site_var1 == 'Fanduel':
|
| 222 |
-
if slate_var1 == 'Main Slate':
|
| 223 |
-
FD_seed = init_FD_seed_frames()
|
| 224 |
-
elif slate_var1 == 'Secondary Slate':
|
| 225 |
-
FD_seed = init_FD_Secondary_seed_frames()
|
| 226 |
-
|
| 227 |
-
raw_baselines = fd_raw
|
| 228 |
-
column_names = fd_columns
|
| 229 |
|
| 230 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
| 231 |
if team_var1 == 'Specific Teams':
|
|
@@ -245,7 +236,27 @@ with tab2:
|
|
| 245 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 246 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 247 |
elif 'working_seed' not in st.session_state:
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 250 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 251 |
data_export = st.session_state.working_seed.copy()
|
|
@@ -266,7 +277,16 @@ with tab2:
|
|
| 266 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 267 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
| 268 |
elif 'working_seed' not in st.session_state:
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 271 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 272 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
@@ -277,7 +297,15 @@ with tab2:
|
|
| 277 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 278 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
| 279 |
elif 'working_seed' not in st.session_state:
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 282 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 283 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
@@ -293,30 +321,14 @@ with tab1:
|
|
| 293 |
st.cache_data.clear()
|
| 294 |
for key in st.session_state.keys():
|
| 295 |
del st.session_state[key]
|
| 296 |
-
DK_seed = init_DK_seed_frames()
|
| 297 |
-
FD_seed = init_FD_seed_frames()
|
| 298 |
dk_raw, fd_raw = init_baselines()
|
| 299 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 300 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 301 |
|
| 302 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
|
| 303 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
| 304 |
-
if sim_site_var1 == 'Draftkings':
|
| 305 |
-
if sim_slate_var1 == 'Main Slate':
|
| 306 |
-
DK_seed = init_DK_seed_frames()
|
| 307 |
-
elif sim_slate_var1 == 'Secondary Slate':
|
| 308 |
-
DK_seed = init_DK_Secondary_seed_frames()
|
| 309 |
-
|
| 310 |
-
raw_baselines = dk_raw
|
| 311 |
-
column_names = dk_columns
|
| 312 |
-
elif sim_site_var1 == 'Fanduel':
|
| 313 |
-
if sim_slate_var1 == 'Main Slate':
|
| 314 |
-
FD_seed = init_FD_seed_frames()
|
| 315 |
-
elif sim_slate_var1 == 'Secondary Slate':
|
| 316 |
-
FD_seed = init_FD_Secondary_seed_frames()
|
| 317 |
-
|
| 318 |
-
raw_baselines = fd_raw
|
| 319 |
-
column_names = fd_columns
|
| 320 |
|
| 321 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
| 322 |
if contest_var1 == 'Small':
|
|
@@ -351,7 +363,7 @@ with tab1:
|
|
| 351 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
| 352 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
| 353 |
}
|
| 354 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict,
|
| 355 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
| 356 |
|
| 357 |
#st.table(Sim_Winner_Frame)
|
|
@@ -378,9 +390,21 @@ with tab1:
|
|
| 378 |
|
| 379 |
else:
|
| 380 |
if sim_site_var1 == 'Draftkings':
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
elif sim_site_var1 == 'Fanduel':
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
st.session_state.maps_dict = {
|
| 385 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
| 386 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
|
@@ -389,7 +413,7 @@ with tab1:
|
|
| 389 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
| 390 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
| 391 |
}
|
| 392 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict,
|
| 393 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
| 394 |
|
| 395 |
#st.table(Sim_Winner_Frame)
|
|
|
|
| 55 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 56 |
|
| 57 |
@st.cache_data(ttl = 600)
|
| 58 |
+
def init_DK_seed_frames(sharp_split):
|
| 59 |
|
| 60 |
collection = db["DK_NFL_seed_frame"]
|
| 61 |
+
cursor = collection.find().limit(sharp_split)
|
| 62 |
|
| 63 |
raw_display = pd.DataFrame(list(cursor))
|
| 64 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 65 |
DK_seed = raw_display.to_numpy()
|
| 66 |
+
fp_array = DK_seed[:sharp_split, :]
|
| 67 |
|
| 68 |
+
return fp_array
|
| 69 |
|
| 70 |
@st.cache_data(ttl = 600)
|
| 71 |
+
def init_DK_Secondary_seed_frames(sharp_split):
|
| 72 |
|
| 73 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
| 74 |
+
cursor = collection.find().limit(sharp_split)
|
| 75 |
|
| 76 |
raw_display = pd.DataFrame(list(cursor))
|
| 77 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 78 |
DK_seed = raw_display.to_numpy()
|
| 79 |
+
fp_array = DK_seed[:sharp_split, :]
|
| 80 |
|
| 81 |
+
return fp_array
|
| 82 |
|
| 83 |
@st.cache_data(ttl = 599)
|
| 84 |
+
def init_FD_seed_frames(sharp_split):
|
| 85 |
|
| 86 |
collection = db["FD_NFL_seed_frame"]
|
| 87 |
+
cursor = collection.find().limit(sharp_split)
|
| 88 |
|
| 89 |
raw_display = pd.DataFrame(list(cursor))
|
| 90 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 91 |
FD_seed = raw_display.to_numpy()
|
| 92 |
+
fp_array = FD_seed[:sharp_split, :]
|
| 93 |
|
| 94 |
+
return fp_array
|
| 95 |
|
| 96 |
@st.cache_data(ttl = 599)
|
| 97 |
+
def init_FD_Secondary_seed_frames(sharp_split):
|
| 98 |
|
| 99 |
collection = db["FD_NFL_Secondary_seed_frame"]
|
| 100 |
+
cursor = collection.find().limit(sharp_split)
|
| 101 |
|
| 102 |
raw_display = pd.DataFrame(list(cursor))
|
| 103 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 104 |
FD_seed = raw_display.to_numpy()
|
| 105 |
+
fp_array = FD_seed[:sharp_split, :]
|
| 106 |
|
| 107 |
+
return fp_array
|
| 108 |
|
| 109 |
@st.cache_data(ttl = 599)
|
| 110 |
def init_baselines():
|
|
|
|
| 150 |
return combined_array
|
| 151 |
|
| 152 |
@st.cache_data
|
| 153 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
|
| 154 |
SimVar = 1
|
| 155 |
Sim_Winners = []
|
| 156 |
+
fp_array = seed_frame.copy()
|
|
|
|
| 157 |
# Pre-vectorize functions
|
| 158 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
| 159 |
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
|
|
|
| 192 |
st.cache_data.clear()
|
| 193 |
for key in st.session_state.keys():
|
| 194 |
del st.session_state[key]
|
| 195 |
+
DK_seed = init_DK_seed_frames(10000)
|
| 196 |
+
FD_seed = init_FD_seed_frames(10000)
|
| 197 |
dk_raw, fd_raw = init_baselines()
|
| 198 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 199 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 200 |
|
| 201 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
|
| 202 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
| 203 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
| 204 |
+
|
| 205 |
if site_var1 == 'Draftkings':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
| 208 |
if team_var1 == 'Specific Teams':
|
|
|
|
| 217 |
stack_var2 = [5, 4, 3, 2, 1, 0]
|
| 218 |
|
| 219 |
elif site_var1 == 'Fanduel':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
| 222 |
if team_var1 == 'Specific Teams':
|
|
|
|
| 236 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 237 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 238 |
elif 'working_seed' not in st.session_state:
|
| 239 |
+
if site_var1 == 'Draftkings':
|
| 240 |
+
if slate_var1 == 'Main Slate':
|
| 241 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
| 242 |
+
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 243 |
+
elif slate_var1 == 'Secondary Slate':
|
| 244 |
+
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split_var)
|
| 245 |
+
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 246 |
+
|
| 247 |
+
raw_baselines = dk_raw
|
| 248 |
+
column_names = dk_columns
|
| 249 |
+
|
| 250 |
+
elif site_var1 == 'Fanduel':
|
| 251 |
+
if slate_var1 == 'Main Slate':
|
| 252 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
| 253 |
+
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 254 |
+
elif slate_var1 == 'Secondary Slate':
|
| 255 |
+
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split_var)
|
| 256 |
+
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 257 |
+
|
| 258 |
+
raw_baselines = fd_raw
|
| 259 |
+
column_names = fd_columns
|
| 260 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 261 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 262 |
data_export = st.session_state.working_seed.copy()
|
|
|
|
| 277 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 278 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
| 279 |
elif 'working_seed' not in st.session_state:
|
| 280 |
+
if slate_var1 == 'Main Slate':
|
| 281 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
| 282 |
+
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 283 |
+
elif slate_var1 == 'Secondary Slate':
|
| 284 |
+
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split_var)
|
| 285 |
+
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 286 |
+
|
| 287 |
+
raw_baselines = dk_raw
|
| 288 |
+
column_names = dk_columns
|
| 289 |
+
|
| 290 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 291 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 292 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
|
| 297 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 298 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
| 299 |
elif 'working_seed' not in st.session_state:
|
| 300 |
+
if slate_var1 == 'Main Slate':
|
| 301 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
| 302 |
+
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 303 |
+
elif slate_var1 == 'Secondary Slate':
|
| 304 |
+
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split_var)
|
| 305 |
+
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
|
| 306 |
+
|
| 307 |
+
raw_baselines = fd_raw
|
| 308 |
+
column_names = fd_columns
|
| 309 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
| 310 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
| 311 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
|
|
|
| 321 |
st.cache_data.clear()
|
| 322 |
for key in st.session_state.keys():
|
| 323 |
del st.session_state[key]
|
| 324 |
+
DK_seed = init_DK_seed_frames(10000)
|
| 325 |
+
FD_seed = init_FD_seed_frames(10000)
|
| 326 |
dk_raw, fd_raw = init_baselines()
|
| 327 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 328 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 329 |
|
| 330 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
|
| 331 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
| 334 |
if contest_var1 == 'Small':
|
|
|
|
| 363 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
| 364 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
| 365 |
}
|
| 366 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
| 367 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
| 368 |
|
| 369 |
#st.table(Sim_Winner_Frame)
|
|
|
|
| 390 |
|
| 391 |
else:
|
| 392 |
if sim_site_var1 == 'Draftkings':
|
| 393 |
+
if sim_slate_var1 == 'Main Slate':
|
| 394 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
| 395 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
| 396 |
+
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split)
|
| 397 |
+
|
| 398 |
+
raw_baselines = dk_raw
|
| 399 |
+
column_names = dk_columns
|
| 400 |
elif sim_site_var1 == 'Fanduel':
|
| 401 |
+
if sim_slate_var1 == 'Main Slate':
|
| 402 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
| 403 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
| 404 |
+
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split)
|
| 405 |
+
|
| 406 |
+
raw_baselines = fd_raw
|
| 407 |
+
column_names = fd_columns
|
| 408 |
st.session_state.maps_dict = {
|
| 409 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
| 410 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
|
|
|
| 413 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
| 414 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
| 415 |
}
|
| 416 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
| 417 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
| 418 |
|
| 419 |
#st.table(Sim_Winner_Frame)
|