Spaces:
Running
Running
import streamlit as st | |
st.set_page_config(layout="wide") | |
for name in dir(): | |
if not name.startswith('_'): | |
del globals()[name] | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
import gc | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import plotly.io as pio | |
import pymongo | |
import certifi | |
ca = certifi.where() | |
def init_conn(): | |
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] | |
credentials = { | |
"type": "service_account", | |
"project_id": "model-sheets-connect", | |
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e", | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n", | |
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com", | |
"client_id": "100369174533302798535", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com" | |
} | |
uri = "mongodb+srv://multichem:Xr1q5wZdXPbxdUmJ@testcluster.lgwtp5i.mongodb.net/?retryWrites=true&w=majority&appName=TestCluster" | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000) | |
db = client["testing_db"] | |
gc_con = gspread.service_account_from_dict(credentials, scope) | |
return gc_con, client, db | |
gcservice_account, client, db = init_conn() | |
NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109' | |
percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'} | |
def init_baselines(): | |
sh = gcservice_account.open_by_url(NBA_Data) | |
collection = db["gamelog"] | |
cursor = collection.find() # Finds all documents in the collection | |
raw_display = pd.DataFrame(list(cursor)) | |
gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""] | |
gamelog_table = gamelog_table[['PLAYER_NAME', 'POS', 'GAME_ID', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A', | |
'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB', | |
'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM']] | |
gamelog_table['assists'].replace("", 0, inplace=True) | |
gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True) | |
gamelog_table['passes'].replace("", 0, inplace=True) | |
gamelog_table['touches'].replace("", 0, inplace=True) | |
gamelog_table['MIN'].replace("", 0, inplace=True) | |
gamelog_table['Fantasy'].replace("", 0, inplace=True) | |
gamelog_table['FD_Fantasy'].replace("", 0, inplace=True) | |
gamelog_table['FPPM'].replace("", 0, inplace=True) | |
gamelog_table['REB'] = gamelog_table['REB'].astype(int) | |
gamelog_table['assists'] = gamelog_table['assists'].astype(int) | |
gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int) | |
gamelog_table['passes'] = gamelog_table['passes'].astype(int) | |
gamelog_table['touches'] = gamelog_table['touches'].astype(int) | |
gamelog_table['MIN'] = gamelog_table['MIN'].astype(int) | |
gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float) | |
gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float) | |
gamelog_table['FPPM'] = gamelog_table['FPPM'].astype(float) | |
gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal'] | |
gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes'] | |
gamelog_table['Touch_per_min'] = gamelog_table['touches'] / gamelog_table['MIN'] | |
gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches'] | |
gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches'] | |
data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP']) | |
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce') | |
gamelog_table['team_score'] = gamelog_table.groupby(['TEAM_NAME', 'GAME_ID'], sort=False)['PTS'].transform('sum') | |
gamelog_table['opp_score'] = gamelog_table.groupby(['GAME_ID'], sort=False)['PTS'].transform('sum') - gamelog_table['team_score'] | |
gamelog_table['spread'] = (gamelog_table['opp_score'] - gamelog_table['team_score']).abs() | |
gamelog_table['GAME_DATE'] = pd.to_datetime(gamelog_table['GAME_DATE']).dt.date | |
spread_dict = dict(zip(gamelog_table['GAME_ID'], gamelog_table['spread'])) | |
gamelog_table = gamelog_table.set_axis(['Player', 'Pos', 'game_id', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM', | |
'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch', 'team_score', 'opp_score', 'spread'], axis=1) | |
worksheet = sh.worksheet('Rotations') | |
raw_display = pd.DataFrame(worksheet.get_values()) | |
raw_display.columns = raw_display.iloc[0] | |
raw_display = raw_display[1:] | |
raw_display = raw_display.reset_index(drop=True) | |
rot_table = raw_display[raw_display['Player'] != ""] | |
rot_table = rot_table[['Player', 'Team', 'PG', 'SG', 'SF', 'PF', 'C', 'Given_Pos']] | |
data_cols = ['PG', 'SG', 'SF', 'PF', 'C'] | |
rot_table[data_cols] = rot_table[data_cols].apply(pd.to_numeric, errors='coerce') | |
rot_table = rot_table[rot_table['Player'] != 0] | |
collection = db["rotations"] | |
cursor = collection.find() # Finds all documents in the collection | |
raw_display = pd.DataFrame(list(cursor)) | |
game_rot = raw_display[raw_display['PLAYER_NAME'] != ""] | |
data_cols = game_rot.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_ABBREVIATION', 'OPP_ABBREVIATION', 'TEAM_NAME', 'OPP_NAME', 'GAME_DATE', | |
'MATCHUP', 'WL', 'backlog_lookup', 'Task', 'game_players']) | |
game_rot[data_cols] = game_rot[data_cols].apply(pd.to_numeric, errors='coerce') | |
game_rot['spread'] = game_rot['GAME_ID'].map(spread_dict) | |
game_rot['GAME_DATE'] = pd.to_datetime(game_rot['GAME_DATE']).dt.date | |
timestamp = gamelog_table['Date'].max() | |
return gamelog_table, rot_table, game_rot, timestamp | |
def seasonlong_build(data_sample): | |
season_long_table = data_sample[['Player', 'Pos', 'Team']] | |
season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float) | |
season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float) | |
season_long_table['Touch/Min'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('sum').astype(int)) | |
season_long_table['Pts'] = data_sample.groupby(['Player', 'Season'], sort=False)['Pts'].transform('mean').astype(float) | |
season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float) | |
season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float) | |
season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int)) | |
season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float) | |
season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float) | |
season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int)) | |
season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float) | |
season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float) | |
season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int)) | |
season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float) | |
season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float) | |
season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float) | |
season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float) | |
season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float) | |
season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float) | |
season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float) | |
season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float) | |
season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float) | |
season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float) | |
season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float) | |
season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float) | |
season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float) | |
season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float) | |
season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float) | |
season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float) | |
season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float) | |
season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float) | |
season_long_table['FPPM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FPPM'].transform('mean').astype(float) | |
season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int)) | |
season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int)) | |
season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int)) | |
season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) / | |
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int)) | |
season_long_table = season_long_table.drop_duplicates(subset='Player') | |
season_long_table = season_long_table.sort_values(by='Fantasy', ascending=False) | |
season_long_table = season_long_table.set_axis(['Player', 'Pos', 'Team', 'Min', 'Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1) | |
return season_long_table | |
def run_fantasy_corr(data_sample): | |
cor_testing = data_sample | |
cor_testing = cor_testing[cor_testing['Season'] == '22024'] | |
date_list = cor_testing['Date'].unique().tolist() | |
player_list = cor_testing['Player'].unique().tolist() | |
corr_frame = pd.DataFrame() | |
corr_frame['DATE'] = date_list | |
for player in player_list: | |
player_testing = cor_testing[cor_testing['Player'] == player] | |
fantasy_map = dict(zip(player_testing['Date'], player_testing['Fantasy'])) | |
corr_frame[player] = corr_frame['DATE'].map(fantasy_map) | |
players_fantasy = corr_frame.drop('DATE', axis=1) | |
corrM = players_fantasy.corr() | |
return corrM | |
def run_min_corr(data_sample): | |
cor_testing = data_sample | |
cor_testing = cor_testing[cor_testing['Season'] == '22024'] | |
date_list = cor_testing['Date'].unique().tolist() | |
player_list = cor_testing['Player'].unique().tolist() | |
corr_frame = pd.DataFrame() | |
corr_frame['DATE'] = date_list | |
for player in player_list: | |
player_testing = cor_testing[cor_testing['Player'] == player] | |
fantasy_map = dict(zip(player_testing['Date'], player_testing['Min'])) | |
corr_frame[player] = corr_frame['DATE'].map(fantasy_map) | |
players_fantasy = corr_frame.drop('DATE', axis=1) | |
corrM = players_fantasy.corr() | |
return corrM | |
def split_frame(input_df, rows): | |
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)] | |
return df | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
gamelog_table, rot_table, game_rot, timestamp = init_baselines() | |
t_stamp = f"Updated through: " + str(timestamp) + f" CST" | |
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min'] | |
basic_season_cols = ['Pos', 'Team', 'Min'] | |
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF', | |
'Fantasy', 'FD_Fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_rot_teams = rot_table.drop_duplicates(subset='Team') | |
total_rot_teams = indv_rot_teams.Team.values.tolist() | |
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION') | |
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(['Gamelogs', 'Correlation Matrix', 'Position vs. Opp', 'Positional Percentages', 'Game Rotations']) | |
with tab1: | |
st.info(t_stamp) | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset1'): | |
st.cache_data.clear() | |
gamelog_table, rot_table, game_rot, timestamp = init_baselines() | |
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min'] | |
basic_season_cols = ['Pos', 'Team', 'Min'] | |
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF', | |
'Fantasy', 'FD_Fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_rot_teams = rot_table.drop_duplicates(subset='Team') | |
total_rot_teams = indv_rot_teams.Team.values.tolist() | |
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION') | |
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1') | |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2') | |
if split_var2 == 'Specific Teams': | |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1') | |
elif split_var2 == 'All': | |
team_var1 = total_teams | |
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3') | |
if split_var3 == 'Specific Dates': | |
low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date') | |
if low_date is not None: | |
low_date = pd.to_datetime(low_date).date() | |
high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date') | |
if high_date is not None: | |
high_date = pd.to_datetime(high_date).date() | |
elif split_var3 == 'All': | |
low_date = gamelog_table['Date'].min() | |
high_date = gamelog_table['Date'].max() | |
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4') | |
if split_var4 == 'Specific Players': | |
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1') | |
elif split_var4 == 'All': | |
player_var1 = total_players | |
spread_var1 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1') | |
min_var1 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1') | |
with col2: | |
working_data = gamelog_table | |
if split_var1 == 'Season Logs': | |
choose_cols = st.container() | |
with choose_cols: | |
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display') | |
disp_stats = basic_season_cols + choose_disp | |
display = st.container() | |
working_data = working_data[working_data['Date'] >= low_date] | |
working_data = working_data[working_data['Date'] <= high_date] | |
working_data = working_data[working_data['Min'] >= min_var1[0]] | |
working_data = working_data[working_data['Min'] <= min_var1[1]] | |
working_data = working_data[working_data['spread'] >= spread_var1[0]] | |
working_data = working_data[working_data['spread'] <= spread_var1[1]] | |
working_data = working_data[working_data['Team'].isin(team_var1)] | |
working_data = working_data[working_data['Player'].isin(player_var1)] | |
season_long_table = seasonlong_build(working_data) | |
season_long_table = season_long_table.set_index('Player') | |
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns") | |
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True) | |
st.download_button( | |
label="Export seasonlogs Model", | |
data=convert_df_to_csv(season_long_table), | |
file_name='Seasonlogs_NBA_View.csv', | |
mime='text/csv', | |
) | |
elif split_var1 == 'Gamelogs': | |
choose_cols = st.container() | |
with choose_cols: | |
choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_gamelog') | |
gamelog_disp_stats = basic_cols + choose_disp_gamelog | |
working_data = working_data[working_data['Date'] >= low_date] | |
working_data = working_data[working_data['Date'] <= high_date] | |
working_data = working_data[working_data['Min'] >= min_var1[0]] | |
working_data = working_data[working_data['Min'] <= min_var1[1]] | |
working_data = working_data[working_data['spread'] >= spread_var1[0]] | |
working_data = working_data[working_data['spread'] <= spread_var1[1]] | |
working_data = working_data[working_data['Team'].isin(team_var1)] | |
working_data = working_data[working_data['Player'].isin(player_var1)] | |
working_data = working_data.reset_index(drop=True) | |
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns") | |
display = st.container() | |
bottom_menu = st.columns((4, 1, 1)) | |
with bottom_menu[2]: | |
batch_size = st.selectbox("Page Size", options=[25, 50, 100]) | |
with bottom_menu[1]: | |
total_pages = ( | |
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1 | |
) | |
current_page = st.number_input( | |
"Page", min_value=1, max_value=total_pages, step=1 | |
) | |
with bottom_menu[0]: | |
st.markdown(f"Page **{current_page}** of **{total_pages}** ") | |
pages = split_frame(gamelog_data, batch_size) | |
# pages = pages.set_index('Player') | |
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export gamelogs Model", | |
data=convert_df_to_csv(gamelog_data), | |
file_name='Gamelogs_NBA_View.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
st.info(t_stamp) | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset2'): | |
st.cache_data.clear() | |
gamelog_table, rot_table, game_rot, timestamp = init_baselines() | |
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min'] | |
basic_season_cols = ['Pos', 'Team', 'Min'] | |
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF', | |
'Fantasy', 'FD_Fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_rot_teams = rot_table.drop_duplicates(subset='Team') | |
total_rot_teams = indv_rot_teams.Team.values.tolist() | |
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION') | |
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
corr_var = st.radio("Are you correlating fantasy or minutes?", ('Fantasy', 'Minutes'), key='corr_var') | |
split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2') | |
if split_var1_t2 == 'Specific Teams': | |
corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2') | |
elif split_var1_t2 == 'Specific Players': | |
corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2') | |
split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2') | |
if split_var2_t2 == 'Specific Dates': | |
low_date_t2 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date_t2') | |
if low_date_t2 is not None: | |
low_date_t2 = pd.to_datetime(low_date_t2).date() | |
high_date_t2 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date_t2') | |
if high_date_t2 is not None: | |
high_date_t2 = pd.to_datetime(high_date_t2).date() | |
elif split_var2_t2 == 'All': | |
low_date_t2 = gamelog_table['Date'].min() | |
high_date_t2 = gamelog_table['Date'].max() | |
spread_var1_t2 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1_t2') | |
min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1_t2') | |
with col2: | |
working_data = gamelog_table | |
if split_var1_t2 == 'Specific Teams': | |
display = st.container() | |
working_data = working_data.sort_values(by='Fantasy', ascending=False) | |
working_data = working_data[working_data['Date'] >= low_date_t2] | |
working_data = working_data[working_data['Date'] <= high_date_t2] | |
working_data = working_data[working_data['Min'] >= min_var1_t2[0]] | |
working_data = working_data[working_data['Min'] <= min_var1_t2[1]] | |
working_data = working_data[working_data['spread'] >= spread_var1_t2[0]] | |
working_data = working_data[working_data['spread'] <= spread_var1_t2[1]] | |
working_data = working_data[working_data['Team'].isin(corr_var1_t2)] | |
if corr_var == 'Fantasy': | |
corr_display = run_fantasy_corr(working_data) | |
elif corr_var == 'Minutes': | |
corr_display = run_min_corr(working_data) | |
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True) | |
elif split_var1_t2 == 'Specific Players': | |
display = st.container() | |
working_data = working_data.sort_values(by='Fantasy', ascending=False) | |
working_data = working_data[working_data['Date'] >= low_date_t2] | |
working_data = working_data[working_data['Date'] <= high_date_t2] | |
working_data = working_data[working_data['Min'] >= min_var1_t2[0]] | |
working_data = working_data[working_data['Min'] <= min_var1_t2[1]] | |
working_data = working_data[working_data['spread'] >= spread_var1_t2[0]] | |
working_data = working_data[working_data['spread'] <= spread_var1_t2[1]] | |
working_data = working_data[working_data['Player'].isin(corr_var1_t2)] | |
if corr_var == 'Fantasy': | |
corr_display = run_fantasy_corr(working_data) | |
elif corr_var == 'Minutes': | |
corr_display = run_min_corr(working_data) | |
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Correlations Model", | |
data=convert_df_to_csv(corr_display), | |
file_name='Correlations_NBA_View.csv', | |
mime='text/csv', | |
) | |
with tab3: | |
st.info(t_stamp) | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset3'): | |
st.cache_data.clear() | |
gamelog_table, rot_table, game_rot, timestamp = init_baselines() | |
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min'] | |
basic_season_cols = ['Pos', 'Team', 'Min'] | |
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF', | |
'Fantasy', 'FD_Fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_rot_teams = rot_table.drop_duplicates(subset='Team') | |
total_rot_teams = indv_rot_teams.Team.values.tolist() | |
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION') | |
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
team_var3 = st.selectbox('Which opponent would you like to view?', options = total_teams, key='team_var3') | |
pos_var3 = st.selectbox('Which position would you like to view?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var3') | |
disp_var3 = st.radio('Which view would you like to see?', options = ['Fantasy', 'Stats'], key='disp_var3') | |
date_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='date_var3') | |
if date_var3 == 'Specific Dates': | |
low_date3 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date3') | |
if low_date3 is not None: | |
low_date3 = pd.to_datetime(low_date3).date() | |
high_date3 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date3') | |
if high_date3 is not None: | |
high_date3 = pd.to_datetime(high_date3).date() | |
elif date_var3 == 'All': | |
low_date3 = gamelog_table['Date'].min() | |
high_date3 = gamelog_table['Date'].max() | |
spread_var3 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var3') | |
min_var3 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var3') | |
with col2: | |
if disp_var3 == 'Stats': | |
choose_cols = st.container() | |
with choose_cols: | |
choose_disp_matchup = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_matchup') | |
matchup_disp_stats = basic_cols + choose_disp_matchup | |
working_data = gamelog_table | |
working_data = working_data[gamelog_table['Date'] >= low_date3] | |
working_data = working_data[gamelog_table['Date'] <= high_date3] | |
season_long_table = seasonlong_build(working_data) | |
fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['Fantasy'])) | |
fd_fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['FD_Fantasy'])) | |
working_data = working_data[working_data['Pos'] == pos_var3] | |
working_data = working_data[working_data['Min'] >= min_var3[0]] | |
working_data = working_data[working_data['Min'] <= min_var3[1]] | |
working_data = working_data[working_data['spread'] >= spread_var3[0]] | |
working_data = working_data[working_data['spread'] <= spread_var3[1]] | |
working_data = working_data[working_data['Opp'] == team_var3] | |
working_data = working_data.reset_index(drop=True) | |
if disp_var3 == 'Fantasy': | |
gamelog_display = working_data[['Player', 'Pos', 'Team', 'Opp', 'Date', 'Min', 'Fantasy', 'FD_Fantasy']] | |
elif disp_var3 == 'Stats': | |
gamelog_data = working_data.reindex(matchup_disp_stats,axis="columns") | |
gamelog_display = gamelog_data | |
gamelog_display['Avg_Fantasy'] = gamelog_display['Player'].map(fantasy_dict) | |
gamelog_display['Avg_FD_Fantasy'] = gamelog_display['Player'].map(fd_fantasy_dict) | |
display = st.container() | |
# pages = pages.set_index('Player') | |
display.dataframe(gamelog_display.style.format(precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export Matchups Model", | |
data=convert_df_to_csv(gamelog_display), | |
file_name='Matchups_NBA_View.csv', | |
mime='text/csv', | |
) | |
with tab4: | |
st.info(t_stamp) | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset4'): | |
st.cache_data.clear() | |
gamelog_table, rot_table, game_rot, timestamp = init_baselines() | |
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min'] | |
basic_season_cols = ['Pos', 'Team', 'Min'] | |
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF', | |
'Fantasy', 'FD_Fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_rot_teams = rot_table.drop_duplicates(subset='Team') | |
total_rot_teams = indv_rot_teams.Team.values.tolist() | |
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION') | |
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5') | |
if split_var5 == 'Specific Teams': | |
team_var4 = st.multiselect('Which teams would you like to view?', options = total_rot_teams, key='team_var4') | |
elif split_var5 == 'All': | |
team_var4 = total_rot_teams | |
with col2: | |
working_data = rot_table | |
rot_display = working_data[working_data['Team'].isin(team_var4)] | |
display = st.container() | |
# rot_display = rot_display.set_index('Player') | |
display.dataframe(rot_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export Rotations Model", | |
data=convert_df_to_csv(rot_display), | |
file_name='Rotations_NBA_View.csv', | |
mime='text/csv', | |
) | |
with tab5: | |
st.info(t_stamp) | |
col1, col2 = st.columns([1, 9]) | |
with col1: | |
if st.button("Reset Data", key='reset5'): | |
st.cache_data.clear() | |
gamelog_table, rot_table, game_rot, timestamp = init_baselines() | |
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min'] | |
basic_season_cols = ['Pos', 'Team', 'Min'] | |
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', | |
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A', | |
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB', | |
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', | |
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'] | |
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF', | |
'Fantasy', 'FD_Fantasy'] | |
indv_teams = gamelog_table.drop_duplicates(subset='Team') | |
total_teams = indv_teams.Team.values.tolist() | |
indv_rot_teams = rot_table.drop_duplicates(subset='Team') | |
total_rot_teams = indv_rot_teams.Team.values.tolist() | |
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION') | |
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist() | |
indv_players = gamelog_table.drop_duplicates(subset='Player') | |
total_players = indv_players.Player.values.tolist() | |
total_dates = gamelog_table.Date.values.tolist() | |
game_rot_view = st.radio("What set would you like to view?", ('Team Rotations', 'Player Rotations'), key='game_rot_view') | |
if game_rot_view == 'Team Rotations': | |
game_rot_team = st.selectbox("What team would you like to work with?", options = total_game_rot_teams, key='game_rot_team') | |
game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread') | |
game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min') | |
game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates') | |
if game_rot_dates == 'Specific Dates': | |
game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date') | |
if game_rot_low_date is not None: | |
game_rot_low_date = pd.to_datetime(low_date).date() | |
game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date') | |
if game_rot_high_date is not None: | |
game_rot_high_date = pd.to_datetime(high_date).date() | |
elif game_rot_dates == 'All': | |
game_rot_low_date = gamelog_table['Date'].min() | |
game_rot_high_date = gamelog_table['Date'].max() | |
elif game_rot_view == 'Player Rotations': | |
game_rot_team = st.multiselect("What players would you like to work with?", options = total_players, key='game_rot_team') | |
game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread') | |
game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min') | |
game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates') | |
if game_rot_dates == 'Specific Dates': | |
game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date') | |
if game_rot_low_date is not None: | |
game_rot_low_date = pd.to_datetime(game_rot_low_date).date() | |
game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date') | |
if game_rot_high_date is not None: | |
game_rot_high_date = pd.to_datetime(game_rot_high_date).date() | |
elif game_rot_dates == 'All': | |
game_rot_low_date = gamelog_table['Date'].min() | |
game_rot_high_date = gamelog_table['Date'].max() | |
with col2: | |
if game_rot_view == 'Player Rotations': | |
team_backlog = game_rot[game_rot['PLAYER_NAME'].isin(game_rot_team)] | |
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date >= game_rot_low_date] | |
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date <= game_rot_high_date] | |
team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]] | |
team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]] | |
team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]] | |
team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]] | |
working_data = game_rot | |
display = st.container() | |
stats_disp = st.container() | |
check_rotation = team_backlog.sort_values(by=['GAME_DATE', 'Finish'], ascending=[False, True]) | |
# Ensure Start and Finish are numeric and Task is properly set | |
check_rotation['Start'] = pd.to_numeric(check_rotation['Start'], errors='coerce') | |
check_rotation['Finish'] = pd.to_numeric(check_rotation['Finish'], errors='coerce') | |
check_rotation['delta'] = pd.to_numeric(check_rotation['delta'], errors='coerce') | |
# Create figure | |
fig = go.Figure() | |
# Add bars for each shift | |
for idx, row in check_rotation.iterrows(): | |
fig.add_trace(go.Bar( | |
x=[row['delta']], # Width of bar | |
y=[row['Task']], | |
base=row['Start'], # Start position of bar | |
orientation='h', | |
text=f"{row['delta']:.1f} Minutes", | |
textposition='inside', | |
showlegend=False, | |
marker_color=px.colors.qualitative.Plotly[hash(row['PLAYER_NAME']) % len(px.colors.qualitative.Plotly)] | |
)) | |
# Update layout | |
fig.update_layout( | |
barmode='overlay', | |
xaxis=dict( | |
range=[0, 48], | |
title='Game Time (minutes)' | |
), | |
yaxis=dict( | |
autorange='reversed' | |
) | |
) | |
# Add quarter lines | |
fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green") | |
fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green") | |
fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green") | |
game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns") | |
game_rot_stats = game_rot_stats.drop_duplicates(subset='backlog_lookup') | |
# pages = pages.set_index('Player') | |
display.plotly_chart(fig, use_container_width=True) | |
stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True) | |
elif game_rot_view == 'Team Rotations': | |
team_backlog = game_rot[game_rot['TEAM_ABBREVIATION'] == game_rot_team] | |
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date >= game_rot_low_date] | |
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date <= game_rot_high_date] | |
team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]] | |
team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]] | |
team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]] | |
team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]] | |
game_id_var = st.selectbox("What game would you like to view?", options = team_backlog['backlog_lookup'].unique(), key='game_id_var') | |
working_data = game_rot | |
display = st.container() | |
stats_disp = st.container() | |
check_rotation = working_data[working_data['backlog_lookup'] == game_id_var] | |
check_rotation = check_rotation.sort_values(by='Start', ascending=True) | |
game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns") | |
game_rot_stats = game_rot_stats.drop_duplicates(subset='PLAYER_NAME') | |
# Create figure | |
fig = go.Figure() | |
distinct_colors = [ | |
'#1f77b4', # blue | |
'#ff7f0e', # orange | |
'#2ca02c', # green | |
'#d62728', # red | |
'#9467bd', # purple | |
'#8c564b', # brown | |
'#e377c2', # pink | |
'#7f7f7f', # gray | |
'#bcbd22', # yellow-green | |
'#17becf', # cyan | |
'#aec7e8', # light blue | |
'#ffbb78', # light orange | |
'#98df8a', # light green | |
'#ff9896', # light red | |
'#c5b0d5' # light purple | |
] | |
# Create a mapping of unique tasks to colors | |
unique_tasks = check_rotation['Task'].unique() | |
color_map = dict(zip(unique_tasks, distinct_colors[:len(unique_tasks)])) | |
# Add bars for each rotation shift | |
for idx, row in check_rotation.iterrows(): | |
fig.add_trace(go.Bar( | |
x=[row['Finish'] - row['Start']], # Width of bar | |
y=[row['Task']], | |
base=row['Start'], # Start position of bar | |
orientation='h', | |
text=f"{row['minutes']:.1f} Minutes", | |
textposition='inside', | |
showlegend=False, | |
marker_color=color_map[row['Task']] # Use mapped color for task | |
)) | |
# Update layout | |
fig.update_layout( | |
barmode='overlay', | |
xaxis=dict( | |
range=[0, 48], | |
title='Game Time (minutes)' | |
), | |
yaxis=dict( | |
autorange='reversed' | |
) | |
) | |
# Add quarter lines | |
fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green") | |
fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green") | |
fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green") | |
# pages = pages.set_index('Player') | |
display.plotly_chart(fig, use_container_width=True) | |
stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True) |