NBA_Gamelogs / app.py
James McCool
Remove debug print statement in game rotation timeline processing
cd862f3
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
import pymongo
import certifi
ca = certifi.where()
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
uri = "mongodb+srv://multichem:Xr1q5wZdXPbxdUmJ@testcluster.lgwtp5i.mongodb.net/?retryWrites=true&w=majority&appName=TestCluster"
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
db = client["testing_db"]
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con, client, db
gcservice_account, client, db = init_conn()
NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
percentages_format = {'PG': '{:.2%}', 'SG': '{:.2%}', 'SF': '{:.2%}', 'PF': '{:.2%}', 'C': '{:.2%}'}
@st.cache_resource(ttl = 599)
def init_baselines():
sh = gcservice_account.open_by_url(NBA_Data)
collection = db["gamelog"]
cursor = collection.find() # Finds all documents in the collection
raw_display = pd.DataFrame(list(cursor))
gamelog_table = raw_display[raw_display['PLAYER_NAME'] != ""]
gamelog_table = gamelog_table[['PLAYER_NAME', 'POS', 'GAME_ID', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP', 'MIN', 'touches', 'PTS', 'FGM', 'FGA', 'FG_PCT', 'FG3M', 'FG3A',
'FG3_PCT', 'FTM', 'FTA', 'FT_PCT', 'reboundChancesOffensive', 'OREB', 'reboundChancesDefensive', 'DREB', 'reboundChancesTotal', 'REB',
'passes', 'secondaryAssists', 'freeThrowAssists', 'assists', 'STL', 'BLK', 'TOV', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM']]
gamelog_table['assists'].replace("", 0, inplace=True)
gamelog_table['reboundChancesTotal'].replace("", 0, inplace=True)
gamelog_table['passes'].replace("", 0, inplace=True)
gamelog_table['touches'].replace("", 0, inplace=True)
gamelog_table['MIN'].replace("", 0, inplace=True)
gamelog_table['Fantasy'].replace("", 0, inplace=True)
gamelog_table['FD_Fantasy'].replace("", 0, inplace=True)
gamelog_table['FPPM'].replace("", 0, inplace=True)
gamelog_table['REB'] = gamelog_table['REB'].astype(int)
gamelog_table['assists'] = gamelog_table['assists'].astype(int)
gamelog_table['reboundChancesTotal'] = gamelog_table['reboundChancesTotal'].astype(int)
gamelog_table['passes'] = gamelog_table['passes'].astype(int)
gamelog_table['touches'] = gamelog_table['touches'].astype(int)
gamelog_table['MIN'] = gamelog_table['MIN'].astype(int)
gamelog_table['Fantasy'] = gamelog_table['Fantasy'].astype(float)
gamelog_table['FD_Fantasy'] = gamelog_table['FD_Fantasy'].astype(float)
gamelog_table['FPPM'] = gamelog_table['FPPM'].astype(float)
gamelog_table['rebound%'] = gamelog_table['REB'] / gamelog_table['reboundChancesTotal']
gamelog_table['assists_per_pass'] = gamelog_table['assists'] / gamelog_table['passes']
gamelog_table['Touch_per_min'] = gamelog_table['touches'] / gamelog_table['MIN']
gamelog_table['Fantasy_per_touch'] = gamelog_table['Fantasy'] / gamelog_table['touches']
gamelog_table['FD_Fantasy_per_touch'] = gamelog_table['FD_Fantasy'] / gamelog_table['touches']
data_cols = gamelog_table.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_NAME', 'OPP_NAME', 'SEASON_ID', 'GAME_DATE', 'MATCHUP'])
gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
gamelog_table['team_score'] = gamelog_table.groupby(['TEAM_NAME', 'GAME_ID'], sort=False)['PTS'].transform('sum')
gamelog_table['opp_score'] = gamelog_table.groupby(['GAME_ID'], sort=False)['PTS'].transform('sum') - gamelog_table['team_score']
gamelog_table['spread'] = (gamelog_table['opp_score'] - gamelog_table['team_score']).abs()
gamelog_table['GAME_DATE'] = pd.to_datetime(gamelog_table['GAME_DATE']).dt.date
spread_dict = dict(zip(gamelog_table['GAME_ID'], gamelog_table['spread']))
gamelog_table = gamelog_table.set_axis(['Player', 'Pos', 'game_id', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy', 'FPPM',
'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch', 'team_score', 'opp_score', 'spread'], axis=1)
worksheet = sh.worksheet('Rotations')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
rot_table = raw_display[raw_display['Player'] != ""]
rot_table = rot_table[['Player', 'Team', 'PG', 'SG', 'SF', 'PF', 'C', 'Given_Pos']]
data_cols = ['PG', 'SG', 'SF', 'PF', 'C']
rot_table[data_cols] = rot_table[data_cols].apply(pd.to_numeric, errors='coerce')
rot_table = rot_table[rot_table['Player'] != 0]
collection = db["rotations"]
cursor = collection.find() # Finds all documents in the collection
raw_display = pd.DataFrame(list(cursor))
game_rot = raw_display[raw_display['PLAYER_NAME'] != ""]
data_cols = game_rot.columns.drop(['PLAYER_NAME', 'POS', 'TEAM_ABBREVIATION', 'OPP_ABBREVIATION', 'TEAM_NAME', 'OPP_NAME', 'GAME_DATE',
'MATCHUP', 'WL', 'backlog_lookup', 'Task', 'game_players'])
game_rot[data_cols] = game_rot[data_cols].apply(pd.to_numeric, errors='coerce')
game_rot['spread'] = game_rot['GAME_ID'].map(spread_dict)
game_rot['GAME_DATE'] = pd.to_datetime(game_rot['GAME_DATE']).dt.date
timestamp = gamelog_table['Date'].max()
return gamelog_table, rot_table, game_rot, timestamp
@st.cache_data(show_spinner=False)
def seasonlong_build(data_sample):
season_long_table = data_sample[['Player', 'Pos', 'Team']]
season_long_table['Min'] = data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('mean').astype(float)
season_long_table['Touches'] = data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('mean').astype(float)
season_long_table['Touch/Min'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Min'].transform('sum').astype(int))
season_long_table['Pts'] = data_sample.groupby(['Player', 'Season'], sort=False)['Pts'].transform('mean').astype(float)
season_long_table['FGM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('mean').astype(float)
season_long_table['FGA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('mean').astype(float)
season_long_table['FG%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FGM'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['FGA'].transform('sum').astype(int))
season_long_table['FG3M'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('mean').astype(float)
season_long_table['FG3A'] = data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('mean').astype(float)
season_long_table['FG3%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FG3M'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['FG3A'].transform('sum').astype(int))
season_long_table['FTM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('mean').astype(float)
season_long_table['FTA'] = data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('mean').astype(float)
season_long_table['FT%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FTM'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['FTA'].transform('sum').astype(int))
season_long_table['OREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB Chance'].transform('mean').astype(float)
season_long_table['OREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['OREB'].transform('mean').astype(float)
season_long_table['DREB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB Chance'].transform('mean').astype(float)
season_long_table['DREB'] = data_sample.groupby(['Player', 'Season'], sort=False)['DREB'].transform('mean').astype(float)
season_long_table['REB Chance'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('mean').astype(float)
season_long_table['REB'] = data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('mean').astype(float)
season_long_table['Passes'] = data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('mean').astype(float)
season_long_table['Alt Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Alt Assists'].transform('mean').astype(float)
season_long_table['FT Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['FT Assists'].transform('mean').astype(float)
season_long_table['Assists'] = data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('mean').astype(float)
season_long_table['Stl'] = data_sample.groupby(['Player', 'Season'], sort=False)['Stl'].transform('mean').astype(float)
season_long_table['Blk'] = data_sample.groupby(['Player', 'Season'], sort=False)['Blk'].transform('mean').astype(float)
season_long_table['Tov'] = data_sample.groupby(['Player', 'Season'], sort=False)['Tov'].transform('mean').astype(float)
season_long_table['PF'] = data_sample.groupby(['Player', 'Season'], sort=False)['PF'].transform('mean').astype(float)
season_long_table['DD'] = data_sample.groupby(['Player', 'Season'], sort=False)['DD'].transform('mean').astype(float)
season_long_table['TD'] = data_sample.groupby(['Player', 'Season'], sort=False)['TD'].transform('mean').astype(float)
season_long_table['Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('mean').astype(float)
season_long_table['FD_Fantasy'] = data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('mean').astype(float)
season_long_table['FPPM'] = data_sample.groupby(['Player', 'Season'], sort=False)['FPPM'].transform('mean').astype(float)
season_long_table['Rebound%'] = (data_sample.groupby(['Player', 'Season'], sort=False)['REB'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['REB Chance'].transform('sum').astype(int))
season_long_table['Assists/Pass'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Assists'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Passes'].transform('sum').astype(int))
season_long_table['Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['Fantasy'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
season_long_table['FD Fantasy/Touch'] = (data_sample.groupby(['Player', 'Season'], sort=False)['FD_Fantasy'].transform('sum').astype(int) /
data_sample.groupby(['Player', 'Season'], sort=False)['Touches'].transform('sum').astype(int))
season_long_table = season_long_table.drop_duplicates(subset='Player')
season_long_table = season_long_table.sort_values(by='Fantasy', ascending=False)
season_long_table = season_long_table.set_axis(['Player', 'Pos', 'Team', 'Min', 'Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch'], axis=1)
return season_long_table
@st.cache_data(show_spinner=False)
def run_fantasy_corr(data_sample):
cor_testing = data_sample
cor_testing = cor_testing[cor_testing['Season'] == '22024']
date_list = cor_testing['Date'].unique().tolist()
player_list = cor_testing['Player'].unique().tolist()
corr_frame = pd.DataFrame()
corr_frame['DATE'] = date_list
for player in player_list:
player_testing = cor_testing[cor_testing['Player'] == player]
fantasy_map = dict(zip(player_testing['Date'], player_testing['Fantasy']))
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
players_fantasy = corr_frame.drop('DATE', axis=1)
corrM = players_fantasy.corr()
return corrM
@st.cache_data(show_spinner=False)
def run_min_corr(data_sample):
cor_testing = data_sample
cor_testing = cor_testing[cor_testing['Season'] == '22024']
date_list = cor_testing['Date'].unique().tolist()
player_list = cor_testing['Player'].unique().tolist()
corr_frame = pd.DataFrame()
corr_frame['DATE'] = date_list
for player in player_list:
player_testing = cor_testing[cor_testing['Player'] == player]
fantasy_map = dict(zip(player_testing['Date'], player_testing['Min']))
corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
players_fantasy = corr_frame.drop('DATE', axis=1)
corrM = players_fantasy.corr()
return corrM
@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
return df
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
tab1, tab2, tab3, tab4, tab5 = st.tabs(['Gamelogs', 'Correlation Matrix', 'Position vs. Opp', 'Positional Percentages', 'Game Rotations'])
with tab1:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
elif split_var2 == 'All':
team_var1 = total_teams
split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
if split_var3 == 'Specific Dates':
low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date')
if low_date is not None:
low_date = pd.to_datetime(low_date).date()
high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date')
if high_date is not None:
high_date = pd.to_datetime(high_date).date()
elif split_var3 == 'All':
low_date = gamelog_table['Date'].min()
high_date = gamelog_table['Date'].max()
split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
if split_var4 == 'Specific Players':
player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1')
elif split_var4 == 'All':
player_var1 = total_players
spread_var1 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1')
min_var1 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1')
with col2:
working_data = gamelog_table
if split_var1 == 'Season Logs':
choose_cols = st.container()
with choose_cols:
choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
disp_stats = basic_season_cols + choose_disp
display = st.container()
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Min'] >= min_var1[0]]
working_data = working_data[working_data['Min'] <= min_var1[1]]
working_data = working_data[working_data['spread'] >= spread_var1[0]]
working_data = working_data[working_data['spread'] <= spread_var1[1]]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
season_long_table = seasonlong_build(working_data)
season_long_table = season_long_table.set_index('Player')
season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)
st.download_button(
label="Export seasonlogs Model",
data=convert_df_to_csv(season_long_table),
file_name='Seasonlogs_NBA_View.csv',
mime='text/csv',
)
elif split_var1 == 'Gamelogs':
choose_cols = st.container()
with choose_cols:
choose_disp_gamelog = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_gamelog')
gamelog_disp_stats = basic_cols + choose_disp_gamelog
working_data = working_data[working_data['Date'] >= low_date]
working_data = working_data[working_data['Date'] <= high_date]
working_data = working_data[working_data['Min'] >= min_var1[0]]
working_data = working_data[working_data['Min'] <= min_var1[1]]
working_data = working_data[working_data['spread'] >= spread_var1[0]]
working_data = working_data[working_data['spread'] <= spread_var1[1]]
working_data = working_data[working_data['Team'].isin(team_var1)]
working_data = working_data[working_data['Player'].isin(player_var1)]
working_data = working_data.reset_index(drop=True)
gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
display = st.container()
bottom_menu = st.columns((4, 1, 1))
with bottom_menu[2]:
batch_size = st.selectbox("Page Size", options=[25, 50, 100])
with bottom_menu[1]:
total_pages = (
int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
)
current_page = st.number_input(
"Page", min_value=1, max_value=total_pages, step=1
)
with bottom_menu[0]:
st.markdown(f"Page **{current_page}** of **{total_pages}** ")
pages = split_frame(gamelog_data, batch_size)
# pages = pages.set_index('Player')
display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export gamelogs Model",
data=convert_df_to_csv(gamelog_data),
file_name='Gamelogs_NBA_View.csv',
mime='text/csv',
)
with tab2:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
corr_var = st.radio("Are you correlating fantasy or minutes?", ('Fantasy', 'Minutes'), key='corr_var')
split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2')
if split_var1_t2 == 'Specific Teams':
corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2')
elif split_var1_t2 == 'Specific Players':
corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2')
split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2')
if split_var2_t2 == 'Specific Dates':
low_date_t2 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date_t2')
if low_date_t2 is not None:
low_date_t2 = pd.to_datetime(low_date_t2).date()
high_date_t2 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date_t2')
if high_date_t2 is not None:
high_date_t2 = pd.to_datetime(high_date_t2).date()
elif split_var2_t2 == 'All':
low_date_t2 = gamelog_table['Date'].min()
high_date_t2 = gamelog_table['Date'].max()
spread_var1_t2 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var1_t2')
min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var1_t2')
with col2:
working_data = gamelog_table
if split_var1_t2 == 'Specific Teams':
display = st.container()
working_data = working_data.sort_values(by='Fantasy', ascending=False)
working_data = working_data[working_data['Date'] >= low_date_t2]
working_data = working_data[working_data['Date'] <= high_date_t2]
working_data = working_data[working_data['Min'] >= min_var1_t2[0]]
working_data = working_data[working_data['Min'] <= min_var1_t2[1]]
working_data = working_data[working_data['spread'] >= spread_var1_t2[0]]
working_data = working_data[working_data['spread'] <= spread_var1_t2[1]]
working_data = working_data[working_data['Team'].isin(corr_var1_t2)]
if corr_var == 'Fantasy':
corr_display = run_fantasy_corr(working_data)
elif corr_var == 'Minutes':
corr_display = run_min_corr(working_data)
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
elif split_var1_t2 == 'Specific Players':
display = st.container()
working_data = working_data.sort_values(by='Fantasy', ascending=False)
working_data = working_data[working_data['Date'] >= low_date_t2]
working_data = working_data[working_data['Date'] <= high_date_t2]
working_data = working_data[working_data['Min'] >= min_var1_t2[0]]
working_data = working_data[working_data['Min'] <= min_var1_t2[1]]
working_data = working_data[working_data['spread'] >= spread_var1_t2[0]]
working_data = working_data[working_data['spread'] <= spread_var1_t2[1]]
working_data = working_data[working_data['Player'].isin(corr_var1_t2)]
if corr_var == 'Fantasy':
corr_display = run_fantasy_corr(working_data)
elif corr_var == 'Minutes':
corr_display = run_min_corr(working_data)
display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Correlations Model",
data=convert_df_to_csv(corr_display),
file_name='Correlations_NBA_View.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
team_var3 = st.selectbox('Which opponent would you like to view?', options = total_teams, key='team_var3')
pos_var3 = st.selectbox('Which position would you like to view?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var3')
disp_var3 = st.radio('Which view would you like to see?', options = ['Fantasy', 'Stats'], key='disp_var3')
date_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='date_var3')
if date_var3 == 'Specific Dates':
low_date3 = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='low_date3')
if low_date3 is not None:
low_date3 = pd.to_datetime(low_date3).date()
high_date3 = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='high_date3')
if high_date3 is not None:
high_date3 = pd.to_datetime(high_date3).date()
elif date_var3 == 'All':
low_date3 = gamelog_table['Date'].min()
high_date3 = gamelog_table['Date'].max()
spread_var3 = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='spread_var3')
min_var3 = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='min_var3')
with col2:
if disp_var3 == 'Stats':
choose_cols = st.container()
with choose_cols:
choose_disp_matchup = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='choose_disp_matchup')
matchup_disp_stats = basic_cols + choose_disp_matchup
working_data = gamelog_table
working_data = working_data[gamelog_table['Date'] >= low_date3]
working_data = working_data[gamelog_table['Date'] <= high_date3]
season_long_table = seasonlong_build(working_data)
fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['Fantasy']))
fd_fantasy_dict = dict(zip(season_long_table['Player'], season_long_table['FD_Fantasy']))
working_data = working_data[working_data['Pos'] == pos_var3]
working_data = working_data[working_data['Min'] >= min_var3[0]]
working_data = working_data[working_data['Min'] <= min_var3[1]]
working_data = working_data[working_data['spread'] >= spread_var3[0]]
working_data = working_data[working_data['spread'] <= spread_var3[1]]
working_data = working_data[working_data['Opp'] == team_var3]
working_data = working_data.reset_index(drop=True)
if disp_var3 == 'Fantasy':
gamelog_display = working_data[['Player', 'Pos', 'Team', 'Opp', 'Date', 'Min', 'Fantasy', 'FD_Fantasy']]
elif disp_var3 == 'Stats':
gamelog_data = working_data.reindex(matchup_disp_stats,axis="columns")
gamelog_display = gamelog_data
gamelog_display['Avg_Fantasy'] = gamelog_display['Player'].map(fantasy_dict)
gamelog_display['Avg_FD_Fantasy'] = gamelog_display['Player'].map(fd_fantasy_dict)
display = st.container()
# pages = pages.set_index('Player')
display.dataframe(gamelog_display.style.format(precision=2), height=500, use_container_width=True)
st.download_button(
label="Export Matchups Model",
data=convert_df_to_csv(gamelog_display),
file_name='Matchups_NBA_View.csv',
mime='text/csv',
)
with tab4:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var4 = st.multiselect('Which teams would you like to view?', options = total_rot_teams, key='team_var4')
elif split_var5 == 'All':
team_var4 = total_rot_teams
with col2:
working_data = rot_table
rot_display = working_data[working_data['Team'].isin(team_var4)]
display = st.container()
# rot_display = rot_display.set_index('Player')
display.dataframe(rot_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export Rotations Model",
data=convert_df_to_csv(rot_display),
file_name='Rotations_NBA_View.csv',
mime='text/csv',
)
with tab5:
st.info(t_stamp)
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Reset Data", key='reset5'):
st.cache_data.clear()
gamelog_table, rot_table, game_rot, timestamp = init_baselines()
basic_cols = ['Player', 'Pos', 'Team', 'Opp', 'Season', 'Date', 'Matchup', 'Min']
basic_season_cols = ['Pos', 'Team', 'Min']
data_cols = ['team_score', 'opp_score', 'spread', 'Touches', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M',
'FG3A', 'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Touch_per_min', 'Fantasy/Touch', 'FD Fantasy/Touch']
season_data_cols = ['Touches', 'Touch/Min', 'Pts', 'FGM', 'FGA', 'FG%', 'FG3M', 'FG3A',
'FG3%', 'FTM', 'FTA', 'FT%', 'OREB Chance', 'OREB', 'DREB Chance', 'DREB', 'REB Chance', 'REB',
'Passes', 'Alt Assists', 'FT Assists', 'Assists', 'Stl', 'Blk', 'Tov', 'PF', 'DD', 'TD', 'Fantasy', 'FD_Fantasy',
'FPPM', 'Rebound%', 'Assists/Pass', 'Fantasy/Touch', 'FD Fantasy/Touch']
game_rot_cols = ['PLAYER_NAME', 'backlog_lookup', 'spread', 'MIN', 'PTS', 'FGM', 'FGA', 'FG3M', 'FG3A', 'FTM', 'FTA', 'REB', 'AST', 'STL', 'BLK', 'TOV', 'PF',
'Fantasy', 'FD_Fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_rot_teams = rot_table.drop_duplicates(subset='Team')
total_rot_teams = indv_rot_teams.Team.values.tolist()
indv_game_rot_teams = game_rot.drop_duplicates(subset='TEAM_ABBREVIATION')
total_game_rot_teams = indv_game_rot_teams.TEAM_ABBREVIATION.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()
game_rot_view = st.radio("What set would you like to view?", ('Team Rotations', 'Player Rotations'), key='game_rot_view')
if game_rot_view == 'Team Rotations':
game_rot_team = st.selectbox("What team would you like to work with?", options = total_game_rot_teams, key='game_rot_team')
game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread')
game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min')
game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates')
if game_rot_dates == 'Specific Dates':
game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date')
if game_rot_low_date is not None:
game_rot_low_date = pd.to_datetime(low_date).date()
game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date')
if game_rot_high_date is not None:
game_rot_high_date = pd.to_datetime(high_date).date()
elif game_rot_dates == 'All':
game_rot_low_date = gamelog_table['Date'].min()
game_rot_high_date = gamelog_table['Date'].max()
elif game_rot_view == 'Player Rotations':
game_rot_team = st.multiselect("What players would you like to work with?", options = total_players, key='game_rot_team')
game_rot_spread = st.slider("Is there a certain spread range you want to view?", 0, 100, (0, 100), key='game_rot_spread')
game_rot_min = st.slider("Is there a certain minutes range you want to view?", 0, 60, (0, 60), key='game_rot_min')
game_rot_dates = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='game_rot_dates')
if game_rot_dates == 'Specific Dates':
game_rot_low_date = st.date_input('Min Date:', value=None, format="YYYY-MM-DD", key='game_rot_low_date')
if game_rot_low_date is not None:
game_rot_low_date = pd.to_datetime(game_rot_low_date).date()
game_rot_high_date = st.date_input('Max Date:', value=None, format="YYYY-MM-DD", key='game_rot_high_date')
if game_rot_high_date is not None:
game_rot_high_date = pd.to_datetime(game_rot_high_date).date()
elif game_rot_dates == 'All':
game_rot_low_date = gamelog_table['Date'].min()
game_rot_high_date = gamelog_table['Date'].max()
with col2:
if game_rot_view == 'Player Rotations':
team_backlog = game_rot[game_rot['PLAYER_NAME'].isin(game_rot_team)]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date >= game_rot_low_date]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date <= game_rot_high_date]
team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]]
team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]]
team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]]
team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]]
working_data = game_rot
display = st.container()
stats_disp = st.container()
check_rotation = team_backlog.sort_values(by=['GAME_DATE', 'Finish'], ascending=[False, True])
# Ensure Start and Finish are numeric and Task is properly set
check_rotation['Start'] = pd.to_numeric(check_rotation['Start'], errors='coerce')
check_rotation['Finish'] = pd.to_numeric(check_rotation['Finish'], errors='coerce')
check_rotation['delta'] = pd.to_numeric(check_rotation['delta'], errors='coerce')
# Create figure
fig = go.Figure()
# Add bars for each shift
for idx, row in check_rotation.iterrows():
fig.add_trace(go.Bar(
x=[row['delta']], # Width of bar
y=[row['Task']],
base=row['Start'], # Start position of bar
orientation='h',
text=f"{row['delta']:.1f} Minutes",
textposition='inside',
showlegend=False,
marker_color=px.colors.qualitative.Plotly[hash(row['PLAYER_NAME']) % len(px.colors.qualitative.Plotly)]
))
# Update layout
fig.update_layout(
barmode='overlay',
xaxis=dict(
range=[0, 48],
title='Game Time (minutes)'
),
yaxis=dict(
autorange='reversed'
)
)
# Add quarter lines
fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green")
game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns")
game_rot_stats = game_rot_stats.drop_duplicates(subset='backlog_lookup')
# pages = pages.set_index('Player')
display.plotly_chart(fig, use_container_width=True)
stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True)
elif game_rot_view == 'Team Rotations':
team_backlog = game_rot[game_rot['TEAM_ABBREVIATION'] == game_rot_team]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date >= game_rot_low_date]
team_backlog = team_backlog[pd.to_datetime(team_backlog['GAME_DATE']).dt.date <= game_rot_high_date]
team_backlog = team_backlog[team_backlog['MIN'] >= game_rot_min[0]]
team_backlog = team_backlog[team_backlog['MIN'] <= game_rot_min[1]]
team_backlog = team_backlog[team_backlog['spread'] >= game_rot_spread[0]]
team_backlog = team_backlog[team_backlog['spread'] <= game_rot_spread[1]]
game_id_var = st.selectbox("What game would you like to view?", options = team_backlog['backlog_lookup'].unique(), key='game_id_var')
working_data = game_rot
display = st.container()
stats_disp = st.container()
check_rotation = working_data[working_data['backlog_lookup'] == game_id_var]
check_rotation = check_rotation.sort_values(by='Start', ascending=True)
game_rot_stats = check_rotation.reindex(game_rot_cols,axis="columns")
game_rot_stats = game_rot_stats.drop_duplicates(subset='PLAYER_NAME')
# Create figure
fig = go.Figure()
distinct_colors = [
'#1f77b4', # blue
'#ff7f0e', # orange
'#2ca02c', # green
'#d62728', # red
'#9467bd', # purple
'#8c564b', # brown
'#e377c2', # pink
'#7f7f7f', # gray
'#bcbd22', # yellow-green
'#17becf', # cyan
'#aec7e8', # light blue
'#ffbb78', # light orange
'#98df8a', # light green
'#ff9896', # light red
'#c5b0d5' # light purple
]
# Create a mapping of unique tasks to colors
unique_tasks = check_rotation['Task'].unique()
color_map = dict(zip(unique_tasks, distinct_colors[:len(unique_tasks)]))
# Add bars for each rotation shift
for idx, row in check_rotation.iterrows():
fig.add_trace(go.Bar(
x=[row['Finish'] - row['Start']], # Width of bar
y=[row['Task']],
base=row['Start'], # Start position of bar
orientation='h',
text=f"{row['minutes']:.1f} Minutes",
textposition='inside',
showlegend=False,
marker_color=color_map[row['Task']] # Use mapped color for task
))
# Update layout
fig.update_layout(
barmode='overlay',
xaxis=dict(
range=[0, 48],
title='Game Time (minutes)'
),
yaxis=dict(
autorange='reversed'
)
)
# Add quarter lines
fig.add_vline(x=12, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=24, line_width=3, line_dash="dash", line_color="green")
fig.add_vline(x=36, line_width=3, line_dash="dash", line_color="green")
# pages = pages.set_index('Player')
display.plotly_chart(fig, use_container_width=True)
stats_disp.dataframe(game_rot_stats.style.format(precision=2), hide_index=True, use_container_width = True)