Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -72,16 +72,22 @@ def init_baselines():
|
|
72 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
73 |
raw_display.replace('', np.nan, inplace=True)
|
74 |
prop_frame = raw_display.dropna(subset='Player')
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
prop_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy'],
|
77 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.', 'Trey Murphy III'], inplace=True)
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
def convert_df_to_csv(df):
|
82 |
return df.to_csv().encode('utf-8')
|
83 |
|
84 |
-
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
85 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
86 |
|
87 |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
|
@@ -90,7 +96,7 @@ with tab1:
|
|
90 |
st.info(t_stamp)
|
91 |
if st.button("Reset Data", key='reset1'):
|
92 |
st.cache_data.clear()
|
93 |
-
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
94 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
95 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
96 |
team_frame = game_model
|
@@ -115,7 +121,7 @@ with tab2:
|
|
115 |
st.info(t_stamp)
|
116 |
if st.button("Reset Data", key='reset2'):
|
117 |
st.cache_data.clear()
|
118 |
-
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
119 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
120 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
121 |
if split_var1 == 'Specific Teams':
|
@@ -137,7 +143,7 @@ with tab3:
|
|
137 |
st.info(t_stamp)
|
138 |
if st.button("Reset Data", key='reset3'):
|
139 |
st.cache_data.clear()
|
140 |
-
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
141 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
142 |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
143 |
if split_var5 == 'Specific Teams':
|
@@ -161,7 +167,7 @@ with tab4:
|
|
161 |
st.info(t_stamp)
|
162 |
if st.button("Reset Data", key='reset4'):
|
163 |
st.cache_data.clear()
|
164 |
-
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
165 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
166 |
col1, col2 = st.columns([1, 5])
|
167 |
|
@@ -306,7 +312,7 @@ with tab5:
|
|
306 |
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
307 |
if st.button("Reset Data/Load Data", key='reset5'):
|
308 |
st.cache_data.clear()
|
309 |
-
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
310 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
311 |
col1, col2 = st.columns([1, 5])
|
312 |
|
@@ -317,6 +323,7 @@ with tab5:
|
|
317 |
export_container = st.empty()
|
318 |
|
319 |
with col1:
|
|
|
320 |
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'points', 'rebounds', 'assists', 'threes', 'PRA', 'points+rebounds',
|
321 |
'points+assists', 'rebounds+assists'])
|
322 |
if prop_type_var == 'All Props':
|
@@ -328,7 +335,10 @@ with tab5:
|
|
328 |
if prop_type_var == 'All Props':
|
329 |
for prop in all_sim_vars:
|
330 |
|
331 |
-
|
|
|
|
|
|
|
332 |
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
333 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
334 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
|
|
72 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
73 |
raw_display.replace('', np.nan, inplace=True)
|
74 |
prop_frame = raw_display.dropna(subset='Player')
|
75 |
+
|
76 |
+
worksheet = sh.worksheet('Pick6_ingest')
|
77 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
78 |
+
raw_display.replace('', np.nan, inplace=True)
|
79 |
+
pick_frame = raw_display.dropna(subset='Player')
|
80 |
|
81 |
prop_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy'],
|
82 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.', 'Trey Murphy III'], inplace=True)
|
83 |
+
pick_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy'],
|
84 |
+
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.', 'Trey Murphy III'], inplace=True)
|
85 |
+
return game_model, player_stats, prop_frame, pick_frame, timestamp
|
86 |
|
87 |
def convert_df_to_csv(df):
|
88 |
return df.to_csv().encode('utf-8')
|
89 |
|
90 |
+
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
91 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
92 |
|
93 |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
|
|
|
96 |
st.info(t_stamp)
|
97 |
if st.button("Reset Data", key='reset1'):
|
98 |
st.cache_data.clear()
|
99 |
+
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
100 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
101 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
102 |
team_frame = game_model
|
|
|
121 |
st.info(t_stamp)
|
122 |
if st.button("Reset Data", key='reset2'):
|
123 |
st.cache_data.clear()
|
124 |
+
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
125 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
126 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
127 |
if split_var1 == 'Specific Teams':
|
|
|
143 |
st.info(t_stamp)
|
144 |
if st.button("Reset Data", key='reset3'):
|
145 |
st.cache_data.clear()
|
146 |
+
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
147 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
148 |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
149 |
if split_var5 == 'Specific Teams':
|
|
|
167 |
st.info(t_stamp)
|
168 |
if st.button("Reset Data", key='reset4'):
|
169 |
st.cache_data.clear()
|
170 |
+
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
171 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
172 |
col1, col2 = st.columns([1, 5])
|
173 |
|
|
|
312 |
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
313 |
if st.button("Reset Data/Load Data", key='reset5'):
|
314 |
st.cache_data.clear()
|
315 |
+
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
316 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
317 |
col1, col2 = st.columns([1, 5])
|
318 |
|
|
|
323 |
export_container = st.empty()
|
324 |
|
325 |
with col1:
|
326 |
+
game_select_var = st.selectbox('Select prop source', options = ['Props', 'Pick6'])
|
327 |
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'points', 'rebounds', 'assists', 'threes', 'PRA', 'points+rebounds',
|
328 |
'points+assists', 'rebounds+assists'])
|
329 |
if prop_type_var == 'All Props':
|
|
|
335 |
if prop_type_var == 'All Props':
|
336 |
for prop in all_sim_vars:
|
337 |
|
338 |
+
if game_select_var == 'Props':
|
339 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
340 |
+
if game_select_var == 'Pick6':
|
341 |
+
prop_df = pick_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
342 |
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
343 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
344 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|