Multichem's picture
Update app.py
75af7be
raw
history blame
30.1 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
gc_con = gspread.service_account_from_dict(credentials)
return gc_con
gcservice_account = init_conn()
master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'
@st.cache_resource(ttl = 300)
def init_baselines():
sh = gcservice_account.open_by_url(master_hold)
worksheet = sh.worksheet('Betting Model Clean')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('#DIV/0!', np.nan, inplace=True)
game_model = raw_display.dropna()
worksheet = sh.worksheet('DK_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
raw_display.rename(columns={"Name": "Player"}, inplace = True)
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
player_stats = raw_display[raw_display['Minutes'] > 0]
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
worksheet = sh.worksheet('Prop_Frame')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
prop_frame = raw_display.dropna()
return game_model, player_stats, prop_frame, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Projections", "Player Prop Simulations", "Stat Specific Simulations"])
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
team_frame = game_model
if line_var1 == 'Percentage':
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Win%']]
# team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if line_var1 == 'American':
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Odds Line']]
# team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Team Model",
data=convert_df_to_csv(team_frame),
file_name='NBA_team_betting_export.csv',
mime='text/csv',
key='team_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = player_stats.Team.values.tolist()
player_stats = player_stats[player_stats['Team'].isin(team_var1)]
player_stats_disp = player_stats.set_index('Player')
player_stats_disp = player_stats_disp.sort_values(by='Fantasy', ascending=False)
st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(player_stats),
file_name='NBA_stats_export.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
with col1:
player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals',
'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
if prop_type_var == 'points':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
elif prop_type_var == 'threes':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'rebounds':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
elif prop_type_var == 'assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
elif prop_type_var == 'blocks':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'steals':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'PRA':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
elif prop_type_var == 'points+rebounds':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
elif prop_type_var == 'points+assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
elif prop_type_var == 'rebounds+assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
line_var = line_var + 1
if st.button('Simulate Prop'):
with col2:
with df_hold_container.container():
df = player_stats
total_sims = 5000
df.replace("", 0, inplace=True)
player_var = df.loc[df['Player'] == player_check]
player_var = player_var.reset_index()
if prop_type_var == 'points':
df['Median'] = df['Points']
elif prop_type_var == 'threes':
df['Median'] = df['3P']
elif prop_type_var == 'rebounds':
df['Median'] = df['Rebounds']
elif prop_type_var == 'assists':
df['Median'] = df['Assists']
elif prop_type_var == 'blocks':
df['Median'] = df['Blocks']
elif prop_type_var == 'steals':
df['Median'] = df['Steals']
elif prop_type_var == 'PRA':
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop_type_var == 'points+rebounds':
df['Median'] = df['Points'] + df['Rebounds']
elif prop_type_var == 'points+assists':
df['Median'] = df['Points'] + df['Assists']
elif prop_type_var == 'rebounds+assists':
df['Median'] = df['Assists'] + df['Rebounds']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
if ou_var == 'Over':
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
elif ou_var == 'Under':
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
player_outcomes = player_outcomes.reset_index()
player_outcomes.columns = ['Instance', 'Outcome']
x1 = player_outcomes.Outcome.to_numpy()
print(x1)
hist_data = [x1]
group_labels = ['player outcomes']
fig = px.histogram(
player_outcomes, x='Outcome')
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
with df_hold_container:
df_hold_container = st.empty()
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
with info_hold_container:
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
with plot_hold_container:
st.dataframe(player_outcomes, use_container_width = True)
plot_hold_container = st.empty()
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.info(t_stamp)
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset5'):
st.cache_data.clear()
game_model, player_stats, prop_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
if st.button('Simulate Prop Category'):
with col2:
with df_hold_container.container():
if prop_type_var == "points":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rebounds":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "assists":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "PRA":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'PRA']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "points+rebounds":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+rebounds']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "points+assists":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rebounds+assists":
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds+assists']
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
prop_dict = dict(zip(df.Player, df.Prop))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 5000
df.replace("", 0, inplace=True)
if prop_type_var == 'points':
df['Median'] = df['Points']
elif prop_type_var == 'rebounds':
df['Median'] = df['Rebounds']
elif prop_type_var == 'assists':
df['Median'] = df['Assists']
elif prop_type_var == 'PRA':
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop_type_var == 'points+rebounds':
df['Median'] = df['Points'] + df['Rebounds']
elif prop_type_var == 'points+assists':
df['Median'] = df['Points'] + df['Assists']
elif prop_type_var == 'rebounds+assists':
df['Median'] = df['Assists'] + df['Rebounds']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
final_outcomes = final_outcomes.set_index('Player')
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='Nba_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)