Spaces:
Running
Running
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
import plotly.express as px | |
scope = ['https://www.googleapis.com/auth/spreadsheets', | |
"https://www.googleapis.com/auth/drive"] | |
credentials = { | |
"type": "service_account", | |
"project_id": "sheets-api-connect-378620", | |
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9", | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n", | |
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com", | |
"client_id": "106625872877651920064", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com" | |
} | |
gc = gspread.service_account_from_dict(credentials) | |
st.set_page_config(layout="wide") | |
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'} | |
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'} | |
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504' | |
def game_betting_model(): | |
sh = gc.open_by_url(master_hold) | |
worksheet = sh.worksheet('Game_Betting') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.replace('#DIV/0!', np.nan, inplace=True) | |
raw_display = raw_display.dropna() | |
return raw_display | |
def player_stat_table(): | |
sh = gc.open_by_url(master_hold) | |
worksheet = sh.worksheet('Prop_Table') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.replace('', np.nan, inplace=True) | |
raw_display = raw_display.dropna() | |
return raw_display | |
def timestamp_table(): | |
sh = gc.open_by_url(master_hold) | |
worksheet = sh.worksheet('DK_ROO') | |
raw_display = worksheet.acell('U2').value | |
return raw_display | |
def player_prop_table(): | |
sh = gc.open_by_url(master_hold) | |
worksheet = sh.worksheet('prop_frame') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.replace('', np.nan, inplace=True) | |
raw_display = raw_display.dropna() | |
return raw_display | |
game_model = game_betting_model() | |
overall_stats = player_stat_table() | |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB'] | |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB'] | |
timestamp = timestamp_table() | |
prop_frame = player_prop_table() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Simulations", "Stat Specific Simulations"]) | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
with tab1: | |
st.info(t_stamp) | |
if st.button("Reset Data", key='reset1'): | |
st.cache_data.clear() | |
game_model = game_betting_model() | |
overall_stats = player_stat_table() | |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB'] | |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB'] | |
prop_frame = player_prop_table() | |
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST" | |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1') | |
team_frame = game_model | |
if line_var1 == 'Percentage': | |
team_frame = team_frame[['team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']] | |
team_frame = team_frame.set_index('team') | |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True) | |
if line_var1 == 'American': | |
team_frame = team_frame[['team', 'Opp', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']] | |
team_frame = team_frame.set_index('team') | |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Team Model", | |
data=convert_df_to_csv(team_frame), | |
file_name='NFL_team_betting_export.csv', | |
mime='text/csv', | |
key='team_export', | |
) | |
with tab2: | |
st.info(t_stamp) | |
if st.button("Reset Data", key='reset2'): | |
st.cache_data.clear() | |
game_model = game_betting_model() | |
overall_stats = player_stat_table() | |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB'] | |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB'] | |
prop_frame = player_prop_table() | |
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST" | |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1') | |
if split_var1 == 'Specific Teams': | |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1') | |
elif split_var1 == 'All': | |
team_var1 = qb_stats.Team.values.tolist() | |
qb_stats = qb_stats[qb_stats['Team'].isin(team_var1)] | |
qb_stats_disp = qb_stats.set_index('Player') | |
qb_stats_disp = qb_stats_disp.sort_values(by='PPR', ascending=False) | |
st.dataframe(qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Prop Model", | |
data=convert_df_to_csv(qb_stats_disp), | |
file_name='NFL_qb_stats_export.csv', | |
mime='text/csv', | |
key='pitcher_prop_export', | |
) | |
with tab3: | |
st.info(t_stamp) | |
if st.button("Reset Data", key='reset3'): | |
st.cache_data.clear() | |
game_model = game_betting_model() | |
overall_stats = player_stat_table() | |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB'] | |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB'] | |
prop_frame = player_prop_table() | |
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST" | |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2') | |
if split_var2 == 'Specific Teams': | |
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2') | |
elif split_var2 == 'All': | |
team_var2 = non_qb_stats.Team.values.tolist() | |
non_qb_stats = non_qb_stats[non_qb_stats['Team'].isin(team_var2)] | |
non_qb_stats_disp = non_qb_stats.set_index('Player') | |
non_qb_stats_disp = non_qb_stats_disp.sort_values(by='PPR', ascending=False) | |
st.dataframe(non_qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Prop Model", | |
data=convert_df_to_csv(non_qb_stats_disp), | |
file_name='NFL_nonqb_stats_export.csv', | |
mime='text/csv', | |
key='hitter_prop_export', | |
) | |
with tab4: | |
st.info(t_stamp) | |
if st.button("Reset Data", key='reset4'): | |
st.cache_data.clear() | |
game_model = game_betting_model() | |
overall_stats = player_stat_table() | |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB'] | |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB'] | |
prop_frame = player_prop_table() | |
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST" | |
col1, col2 = st.columns([1, 5]) | |
with col2: | |
df_hold_container = st.empty() | |
info_hold_container = st.empty() | |
plot_hold_container = st.empty() | |
with col1: | |
player_check = st.selectbox('Select player to simulate props', options = overall_stats['Player'].unique()) | |
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Pass Yards', 'Pass TDs', 'Rush Yards', 'Rush TDs', 'Receptions', 'Rec Yards', 'Rec TDs', 'Fantasy', 'FD Fantasy', 'PrizePicks']) | |
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under']) | |
if prop_type_var == 'Pass Yards': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 100.0, max_value = 400.5, value = 250.5, step = .5) | |
elif prop_type_var == 'Pass TDs': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5) | |
elif prop_type_var == 'Rush Yards': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5) | |
elif prop_type_var == 'Rush TDs': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5) | |
elif prop_type_var == 'Receptions': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 15.5, value = 5.5, step = .5) | |
elif prop_type_var == 'Rec Yards': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5) | |
elif prop_type_var == 'Rec TDs': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5) | |
elif prop_type_var == 'Fantasy': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5) | |
elif prop_type_var == 'FD Fantasy': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5) | |
elif prop_type_var == 'PrizePicks': | |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5) | |
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1) | |
line_var = line_var + 1 | |
if st.button('Simulate Prop'): | |
with col2: | |
with df_hold_container.container(): | |
df = overall_stats | |
total_sims = 5000 | |
df.replace("", 0, inplace=True) | |
player_var = df.loc[df['Player'] == player_check] | |
player_var = player_var.reset_index() | |
if prop_type_var == 'Pass Yards': | |
df['Median'] = df['pass_yards'] | |
elif prop_type_var == 'Pass TDs': | |
df['Median'] = df['pass_tds'] | |
elif prop_type_var == 'Rush Yards': | |
df['Median'] = df['rush_yards'] | |
elif prop_type_var == 'Rush TDs': | |
df['Median'] = df['rush_tds'] | |
elif prop_type_var == 'Receptions': | |
df['Median'] = df['rec'] | |
elif prop_type_var == 'Rec Yards': | |
df['Median'] = df['rec_yards'] | |
elif prop_type_var == 'Rec TDs': | |
df['Median'] = df['rec_tds'] | |
elif prop_type_var == 'Fantasy': | |
df['Median'] = df['PPR'] | |
elif prop_type_var == 'FD Fantasy': | |
df['Median'] = df['Half_PPF'] | |
elif prop_type_var == 'PrizePicks': | |
df['Median'] = df['Half_PPF'] | |
flex_file = df | |
flex_file['Floor'] = flex_file['Median'] * .20 | |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80) | |
flex_file['STD'] = flex_file['Median'] / 4 | |
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']] | |
hold_file = flex_file | |
overall_file = flex_file | |
salary_file = flex_file | |
overall_players = overall_file[['Player']] | |
for x in range(0,total_sims): | |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) | |
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) | |
overall_file.astype('int').dtypes | |
players_only = hold_file[['Player']] | |
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True) | |
players_only['Mean_Outcome'] = overall_file.mean(axis=1) | |
players_only['10%'] = overall_file.quantile(0.1, axis=1) | |
players_only['90%'] = overall_file.quantile(0.9, axis=1) | |
if ou_var == 'Over': | |
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims) | |
elif ou_var == 'Under': | |
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims)) | |
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100)) | |
players_only['Player'] = hold_file[['Player']] | |
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']] | |
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet") | |
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check] | |
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check] | |
player_outcomes = player_outcomes.drop(columns=['Player']).transpose() | |
player_outcomes = player_outcomes.reset_index() | |
player_outcomes.columns = ['Instance', 'Outcome'] | |
x1 = player_outcomes.Outcome.to_numpy() | |
print(x1) | |
hist_data = [x1] | |
group_labels = ['player outcomes'] | |
fig = px.histogram( | |
player_outcomes, x='Outcome') | |
fig.add_vline(x=prop_var, line_dash="dash", line_color="green") | |
with df_hold_container: | |
df_hold_container = st.empty() | |
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'} | |
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True) | |
with info_hold_container: | |
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.') | |
with plot_hold_container: | |
st.dataframe(player_outcomes, use_container_width = True) | |
plot_hold_container = st.empty() | |
st.plotly_chart(fig, use_container_width=True) | |
with tab5: | |
st.info(t_stamp) | |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.') | |
if st.button("Reset Data/Load Data", key='reset5'): | |
st.cache_data.clear() | |
game_model = game_betting_model() | |
overall_stats = player_stat_table() | |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB'] | |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB'] | |
prop_frame = player_prop_table() | |
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST" | |
col1, col2 = st.columns([1, 5]) | |
with col2: | |
df_hold_container = st.empty() | |
info_hold_container = st.empty() | |
plot_hold_container = st.empty() | |
export_container = st.empty() | |
with col1: | |
prop_type_var = st.selectbox('Select prop category', options = ['Pass Yards', 'Rush Yards', 'Receiving Yards']) | |
if st.button('Simulate Prop Category'): | |
with col2: | |
with df_hold_container.container(): | |
if prop_type_var == "Pass Yards": | |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']] | |
prop_df = prop_df.loc[prop_df['prop_type'] == 'pass_yards'] | |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']] | |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True) | |
prop_df = prop_df.loc[prop_df['Prop'] != 0] | |
st.table(prop_df) | |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101)) | |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101)) | |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
elif prop_type_var == "Rush Yards": | |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']] | |
prop_df = prop_df.loc[prop_df['prop_type'] == 'rush_yards'] | |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']] | |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True) | |
prop_df = prop_df.loc[prop_df['Prop'] != 0] | |
st.table(prop_df) | |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101)) | |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101)) | |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
elif prop_type_var == "Receiving Yards": | |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']] | |
prop_df = prop_df.loc[prop_df['prop_type'] == 'rec_yards'] | |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']] | |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True) | |
prop_df = prop_df.loc[prop_df['Prop'] != 0] | |
st.table(prop_df) | |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101)) | |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101)) | |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player']) | |
prop_dict = dict(zip(df.Player, df.Prop)) | |
over_dict = dict(zip(df.Player, df.Over)) | |
under_dict = dict(zip(df.Player, df.Under)) | |
total_sims = 1000 | |
df.replace("", 0, inplace=True) | |
if prop_type_var == "Pass Yards": | |
df['Median'] = df['pass_yards'] | |
elif prop_type_var == "Rush Yards": | |
df['Median'] = df['rush_yards'] | |
elif prop_type_var == "Receiving Yards": | |
df['Median'] = df['rec_yards'] | |
flex_file = df | |
flex_file['Floor'] = flex_file['Median'] * .20 | |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80) | |
flex_file['STD'] = flex_file['Median'] / 4 | |
flex_file['Prop'] = flex_file['Player'].map(prop_dict) | |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']] | |
hold_file = flex_file | |
overall_file = flex_file | |
prop_file = flex_file | |
overall_players = overall_file[['Player']] | |
for x in range(0,total_sims): | |
prop_file[x] = prop_file['Prop'] | |
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) | |
for x in range(0,total_sims): | |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) | |
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) | |
players_only = hold_file[['Player']] | |
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True) | |
prop_check = (overall_file - prop_file) | |
players_only['Mean_Outcome'] = overall_file.mean(axis=1) | |
players_only['10%'] = overall_file.quantile(0.1, axis=1) | |
players_only['90%'] = overall_file.quantile(0.9, axis=1) | |
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims) | |
players_only['Imp Over'] = players_only['Player'].map(over_dict) | |
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1) | |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims) | |
players_only['Imp Under'] = players_only['Player'].map(under_dict) | |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1) | |
players_only['Prop'] = players_only['Player'].map(prop_dict) | |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100 | |
players_only['prop_threshold'] = .10 | |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0] | |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over'] | |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under'] | |
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff']) | |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under") | |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet") | |
players_only['Edge'] = players_only['Bet_check'] | |
players_only['Player'] = hold_file[['Player']] | |
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']] | |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False) | |
final_outcomes = final_outcomes.set_index('Player') | |
with df_hold_container: | |
df_hold_container = st.empty() | |
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
with export_container: | |
export_container = st.empty() | |
st.download_button( | |
label="Export Projections", | |
data=convert_df_to_csv(final_outcomes), | |
file_name='NFL_prop_proj.csv', | |
mime='text/csv', | |
key='prop_proj', | |
) | |