MLB_Research_Sheets / src /streamlit_app.py
James McCool
Refactor Streamlit app to use MongoDB and streamline data loading
ab2c04b
raw
history blame
6.06 kB
import streamlit as st
import numpy as np
import pandas as pd
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
div{
box-sizing: content-box !important;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 61)
def init_baselines():
db_pulls = ['Bullpen_Data', 'Hitter_Agg_Merge', 'Hitter_Long_Merge', 'Hitter_Short_Merge', 'Pitcher_Agg_Merge', 'Pitcher_Long_Merge', 'Pitcher_Short_Merge',
'Slate_Hitters_Merge', 'Slate_Team_Merge', 'Starting_Pitchers', 'True_AVG_Split', 'Pitcher_Info', 'Hitter_Info']
for table in db_pulls:
collection = db[table]
cursor = collection.find()
df = pd.DataFrame(cursor)
if table == 'Bullpen_Data':
bp_data = df
elif table == 'Hitter_Agg_Merge':
hitter_agg = df
elif table == 'Hitter_Long_Merge':
hitter_long = df
elif table == 'Hitter_Short_Merge':
hitter_short = df
elif table == 'Pitcher_Agg_Merge':
pitcher_agg = df
elif table == 'Pitcher_Long_Merge':
pitcher_long = df
elif table == 'Pitcher_Short_Merge':
pitcher_short = df
elif table == 'Slate_Hitters_Merge':
slate_hitters = df
elif table == 'Slate_Team_Merge':
slate_team = df
elif table == 'Starting_Pitchers':
starting_pitchers = df
elif table == 'True_AVG_Split':
true_avg_split = df
elif table == 'Pitcher_Info':
pitcher_info = df
elif table == 'Hitter_Info':
hitter_info = df
return bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info
bp_data, hitter_agg, hitter_long, hitter_short, pitcher_agg, pitcher_long, pitcher_short, slate_hitters, slate_team, starting_pitchers, true_avg_split, pitcher_info, hitter_info = init_baselines()
pitcher_tab, hitter_tab, team_tab = st.tabs(['Pitchers', 'Hitters', 'Team'])
with pitcher_tab:
with st.expander('Info and Display Options'):
st.info('Note: Splits options are available for all baseline tables, they do not apply to True AVG, HWSr, or the Overview tables')
col1, col2, col3 = st.columns(3)
with col1:
site_var_sp = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_sp')
with col2:
table_var_sp = st.selectbox('Table', ['True AVG Splits', 'HWSr Splits', 'Current Slate Overview', 'Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_sp')
with col3:
splits_var_sp = st.selectbox('Splits', ['Overall', 'RHH', 'LHH'], key = 'splits_var_sp')
if table_var_sp == 'True AVG Splits':
st.dataframe(true_avg_split)
elif table_var_sp == 'HWSr Splits':
st.dataframe(true_avg_split)
elif table_var_sp == 'Current Slate Overview':
st.dataframe(starting_pitchers)
elif table_var_sp == 'Active Baselines':
st.dataframe(pitcher_info)
elif table_var_sp == 'League Aggregate Baselines':
st.dataframe(pitcher_agg)
elif table_var_sp == 'League Short Term Baselines':
st.dataframe(pitcher_short)
elif table_var_sp == 'League Long Term Baselines':
st.dataframe(pitcher_long)
with hitter_tab:
with st.expander('Info and Display Options'):
st.info('Note: Splits options are available for all baseline tables')
col1, col2, col3 = st.columns(3)
with col1:
site_var_hitter = st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_hitter')
with col2:
table_var_hitter = st.selectbox('Table', ['Active Baselines', 'League Aggregate Baselines', 'League Short Term Baselines', 'League Long Term Baselines'], key = 'table_var_hitter')
with col3:
splits_var_hitter = st.selectbox('Splits', ['Overall', 'RHP', 'LHP'], key = 'splits_var_hitter')
if table_var_hitter == 'Current Slate Overview':
st.dataframe(starting_pitchers)
elif table_var_hitter == 'Active Baselines':
st.dataframe(hitter_info)
elif table_var_hitter == 'League Aggregate Baselines':
st.dataframe(hitter_agg)
elif table_var_hitter == 'League Short Term Baselines':
st.dataframe(hitter_short)
elif table_var_hitter == 'League Long Term Baselines':
st.dataframe(hitter_long)
with team_tab:
with st.expander('Info and Display Options'):
col1, col2, col3 = st.columns(3)
with col1:
site_var_team= st.selectbox('Site', ['DraftKings', 'FanDuel'], key = 'site_var_team')
with col2:
table_var_team = st.selectbox('Table', ['Team Baselines', 'Bullpen Baselines'], key = 'table_var_team')
if table_var_team == 'Team Baselines':
st.dataframe(slate_team)
elif table_var_team == 'Bullpen Baselines':
st.dataframe(bp_data)