James McCool
Add volatility preset option in app.py and implement volatility_preset function. Updated lineup generation logic to include new preset for enhanced lineup edge management.
cc0edce
import pandas as pd | |
import numpy as np | |
def large_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list): | |
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score'] | |
player_columns = [col for col in portfolio.columns if col not in excluded_cols] | |
concat_portfolio = portfolio.copy() | |
concat_portfolio = concat_portfolio.sort_values(by='Similarity Score', ascending=True).reset_index(drop=True) | |
# Calculate target similarity scores for linear progression | |
similarity_floor = concat_portfolio['Similarity Score'].min() | |
similarity_ceiling = concat_portfolio['Similarity Score'].max() | |
# Create evenly spaced target similarity scores | |
target_similarities = np.linspace(similarity_floor, similarity_ceiling, lineup_target) | |
# Find the closest lineup to each target similarity score | |
selected_indices = [] | |
for target_sim in target_similarities: | |
# Find the index of the closest similarity score | |
closest_idx = (concat_portfolio['Similarity Score'] - target_sim).abs().idxmin() | |
if closest_idx not in selected_indices: # Avoid duplicates | |
selected_indices.append(closest_idx) | |
# Select the lineups | |
concat_portfolio = concat_portfolio.loc[selected_indices].reset_index(drop=True) | |
return concat_portfolio.sort_values(by='median', ascending=False) | |