James McCool
Add 'Product Own' calculation to portfolio in predict_dupes.py
1afc466
raw
history blame
12.8 kB
import streamlit as st
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var):
if strength_var == 'Weak':
dupes_multiplier = .75
percentile_multiplier = .90
elif strength_var == 'Average':
dupes_multiplier = 1.00
percentile_multiplier = 1.00
elif strength_var == 'Sharp':
dupes_multiplier = 1.25
percentile_multiplier = 1.10
max_ownership = max(maps_dict['own_map'].values()) / 100
average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
if site_var == 'Fanduel':
if type_var == 'Showdown':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
flex_ownerships = pd.concat([
portfolio.iloc[:,1].map(maps_dict['own_map']),
portfolio.iloc[:,2].map(maps_dict['own_map']),
portfolio.iloc[:,3].map(maps_dict['own_map']),
portfolio.iloc[:,4].map(maps_dict['own_map'])
])
flex_rank = flex_ownerships.rank(pct=True)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
if type_var == 'Classic':
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
for i in range(1, num_players + 1):
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
elif site_var == 'Draftkings':
if type_var == 'Showdown':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
flex_ownerships = pd.concat([
portfolio.iloc[:,1].map(maps_dict['own_map']),
portfolio.iloc[:,2].map(maps_dict['own_map']),
portfolio.iloc[:,3].map(maps_dict['own_map']),
portfolio.iloc[:,4].map(maps_dict['own_map']),
portfolio.iloc[:,5].map(maps_dict['own_map'])
])
flex_rank = flex_ownerships.rank(pct=True)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
if type_var == 'Classic':
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
for i in range(1, num_players + 1):
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
# Round and handle negative values
portfolio['Dupes'] = np.where(
np.round(portfolio['dupes_calc'], 0) <= 0,
0,
np.round(portfolio['dupes_calc'], 0) - 1
)
portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
portfolio['own_ratio'] = np.where(
portfolio[own_columns].isin([max_ownership]).any(axis=1),
portfolio['own_sum'] / portfolio['own_average'],
(portfolio['own_sum'] - max_ownership) / portfolio['own_average']
)
percentile_cut_scalar = portfolio['median'].max() # Get scalar value
if type_var == 'Classic':
own_ratio_nerf = 2
elif type_var == 'Showdown':
own_ratio_nerf = 1.5
portfolio['Finish_percentile'] = portfolio.apply(
lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2) < .0005
else (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2),
axis=1
)
portfolio['Ref_Proj'] = portfolio['median'].max()
portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
max_allowed_win = (1 / Contest_Size) * 5
portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier
portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
portfolio['Lineup Edge'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
portfolio['Product Own'] = portfolio[own_columns].product(axis=1)
portfolio = portfolio.drop(columns=dup_count_columns)
portfolio = portfolio.drop(columns=own_columns)
portfolio = portfolio.drop(columns=calc_columns)
return portfolio