Tonic commited on
Commit
2c47106
1 Parent(s): 75b602e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -149
app.py CHANGED
@@ -1,155 +1,42 @@
1
- from pathlib import Path
2
- from typing import List, Dict, Tuple
3
- import matplotlib.colors as mpl_colors
4
-
5
- import pandas as pd
6
- import seaborn as sns
7
- import shinyswatch
8
-
9
- import shiny.experimental as x
10
- from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
11
-
12
- sns.set_theme()
13
-
14
- www_dir = Path(__file__).parent.resolve() / "www"
15
-
16
- df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
17
- numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
18
- species: List[str] = df["Species"].unique().tolist()
19
- species.sort()
20
-
21
- app_ui = x.ui.page_fillable(
22
- shinyswatch.theme.minty(),
23
- ui.layout_sidebar(
24
- ui.panel_sidebar(
25
- # Artwork by @allison_horst
26
- ui.input_selectize(
27
- "xvar",
28
- "X variable",
29
- numeric_cols,
30
- selected="Bill Length (mm)",
31
- ),
32
- ui.input_selectize(
33
- "yvar",
34
- "Y variable",
35
- numeric_cols,
36
- selected="Bill Depth (mm)",
37
- ),
38
- ui.input_checkbox_group(
39
- "species", "Filter by species", species, selected=species
40
- ),
41
- ui.hr(),
42
- ui.input_switch("by_species", "Show species", value=True),
43
- ui.input_switch("show_margins", "Show marginal plots", value=True),
44
- width=2,
45
- ),
46
- ui.panel_main(
47
- ui.output_ui("value_boxes"),
48
- x.ui.output_plot("scatter", fill=True),
49
- ui.help_text(
50
- "Artwork by ",
51
- ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
52
- class_="text-end",
53
- ),
54
- ),
55
- ),
56
  )
57
 
58
-
59
- def server(input: Inputs, output: Outputs, session: Session):
60
- @reactive.Calc
61
- def filtered_df() -> pd.DataFrame:
62
- """Returns a Pandas data frame that includes only the desired rows"""
63
-
64
- # This calculation "req"uires that at least one species is selected
65
- req(len(input.species()) > 0)
66
-
67
- # Filter the rows so we only include the desired species
68
- return df[df["Species"].isin(input.species())]
69
-
70
- @output
71
- @render.plot
72
- def scatter():
73
- """Generates a plot for Shiny to display to the user"""
74
-
75
- # The plotting function to use depends on whether margins are desired
76
- plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
77
-
78
- plotfunc(
79
- data=filtered_df(),
80
- x=input.xvar(),
81
- y=input.yvar(),
82
- palette=palette,
83
- hue="Species" if input.by_species() else None,
84
- hue_order=species,
85
- legend=False,
86
- )
87
-
88
- @output
89
- @render.ui
90
- def value_boxes():
91
- df = filtered_df()
92
-
93
- def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
94
- return x.ui.value_box(
95
- title,
96
- count,
97
- {"class_": "pt-1 pb-0"},
98
- showcase=x.ui.as_fill_item(
99
- ui.tags.img(
100
- {"style": "object-fit:contain;"},
101
- src=showcase_img,
102
- )
103
- ),
104
- theme_color=None,
105
- style=f"background-color: {bgcol};",
106
- )
107
-
108
- if not input.by_species():
109
- return penguin_value_box(
110
- "Penguins",
111
- len(df.index),
112
- bg_palette["default"],
113
- # Artwork by @allison_horst
114
- showcase_img="penguins.png",
115
- )
116
-
117
- value_boxes = [
118
- penguin_value_box(
119
- name,
120
- len(df[df["Species"] == name]),
121
- bg_palette[name],
122
- # Artwork by @allison_horst
123
- showcase_img=f"{name}.png",
124
- )
125
- for name in species
126
- # Only include boxes for _selected_ species
127
- if name in input.species()
128
- ]
129
-
130
- return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes)
131
-
132
-
133
- # "darkorange", "purple", "cyan4"
134
- colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
135
- colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
136
-
137
- palette: Dict[str, Tuple[float, float, float]] = {
138
- "Adelie": colors[0],
139
- "Chinstrap": colors[1],
140
- "Gentoo": colors[2],
141
- "default": sns.color_palette()[0], # type: ignore
142
  }
143
 
144
- bg_palette = {}
145
- # Use `sns.set_style("whitegrid")` to help find approx alpha value
146
- for name, col in palette.items():
147
- # Adjusted n_colors until `axe` accessibility did not complain about color contrast
148
- bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
149
-
150
 
151
- app = App(
152
- app_ui,
153
- server,
154
- static_assets=str(www_dir),
 
 
 
 
 
155
  )
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ from flaml import autogen
3
+
4
+ # Set up configurations
5
+ config_list = autogen.config_list_from_json(
6
+ "OAI_CONFIG_LIST",
7
+ filter_dict={
8
+ "model": ["gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"],
9
+ },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  )
11
 
12
+ llm_config = {
13
+ "request_timeout": 600,
14
+ "seed": 42,
15
+ "config_list": config_list,
16
+ "temperature": 0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  }
18
 
19
+ # Construct agents
20
+ assistant = autogen.AssistantAgent(
21
+ name="assistant",
22
+ llm_config=llm_config,
23
+ )
 
24
 
25
+ user_proxy = autogen.UserProxyAgent(
26
+ name="user_proxy",
27
+ human_input_mode="TERMINATE",
28
+ max_consecutive_auto_reply=10,
29
+ is_termination_msg=lambda x: x.get("content", "").rstrip().endswith("TERMINATE"),
30
+ code_execution_config={"work_dir": "web"},
31
+ llm_config=llm_config,
32
+ system_message="""Reply TERMINATE if the task has been solved at full satisfaction.
33
+ Otherwise, reply CONTINUE, or the reason why the task is not solved yet."""
34
  )
35
+
36
+ # Start a conversation
37
+ user_proxy.initiate_chat(
38
+ assistant,
39
+ message="""
40
+ Tell me about this project, and the libary, then also tell me what I can use it for: https://www.gradio.app/guides/quickstart
41
+ """,
42
+ )