Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import faiss
|
3 |
+
import streamlit as st
|
4 |
+
from groq import Groq
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
import numpy as np
|
9 |
+
from streamlit_option_menu import option_menu
|
10 |
+
|
11 |
+
# Groq API Key
|
12 |
+
client = Groq(api_key="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")
|
13 |
+
|
14 |
+
# Load embedding model
|
15 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
16 |
+
|
17 |
+
# FAISS Index
|
18 |
+
dimension = 384
|
19 |
+
index = faiss.IndexFlatL2(dimension)
|
20 |
+
|
21 |
+
# Sidebar navigation
|
22 |
+
with st.sidebar:
|
23 |
+
selected = option_menu(
|
24 |
+
"Research Article Helper",
|
25 |
+
["Home", "Upload PDF", "Summary", "About"],
|
26 |
+
icons=["house", "file-earmark-arrow-up", "file-earmark-text", "info-circle"],
|
27 |
+
menu_icon="cast",
|
28 |
+
default_index=0,
|
29 |
+
)
|
30 |
+
|
31 |
+
# App title
|
32 |
+
st.title("π Research Article Helper")
|
33 |
+
st.write("Interact with research articles by uploading PDFs and asking questions.")
|
34 |
+
|
35 |
+
# "Upload PDF" Section
|
36 |
+
if selected == "Upload PDF":
|
37 |
+
st.subheader("π Upload a PDF")
|
38 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
39 |
+
if uploaded_file:
|
40 |
+
pdf_reader = PdfReader(uploaded_file)
|
41 |
+
text = ""
|
42 |
+
for page in pdf_reader.pages:
|
43 |
+
text += page.extract_text()
|
44 |
+
|
45 |
+
# Split text into chunks
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
47 |
+
chunks = text_splitter.split_text(text)
|
48 |
+
|
49 |
+
# Encode chunks and store embeddings in FAISS
|
50 |
+
embeddings = embedding_model.encode(chunks)
|
51 |
+
for i, embedding in enumerate(embeddings):
|
52 |
+
index.add(np.array([embedding]))
|
53 |
+
|
54 |
+
st.success(f"β
Processed {len(chunks)} chunks and stored embeddings in FAISS.")
|
55 |
+
st.session_state['chunks'] = chunks
|
56 |
+
|
57 |
+
# "Summary" Section
|
58 |
+
if selected == "Summary":
|
59 |
+
st.subheader("π Get a Summary of the Uploaded PDF")
|
60 |
+
if 'chunks' in st.session_state:
|
61 |
+
if st.button("Generate Summary"):
|
62 |
+
full_text = " ".join(st.session_state['chunks'][:5]) # Summarizing first 5 chunks as an example
|
63 |
+
chat_completion = client.chat.completions.create(
|
64 |
+
messages=[
|
65 |
+
{
|
66 |
+
"role": "user",
|
67 |
+
"content": f"Provide a concise summary of the following text:\n\n{full_text}",
|
68 |
+
}
|
69 |
+
],
|
70 |
+
model="llama3-8b-8192",
|
71 |
+
)
|
72 |
+
summary = chat_completion.choices[0].message.content
|
73 |
+
st.write("### π Summary:")
|
74 |
+
st.write(summary)
|
75 |
+
else:
|
76 |
+
st.info("Click the button above to generate a summary.")
|
77 |
+
else:
|
78 |
+
st.warning("Please upload a PDF in the 'Upload PDF' section first.")
|
79 |
+
|
80 |
+
# "About" Section
|
81 |
+
if selected == "About":
|
82 |
+
st.subheader("βΉοΈ About")
|
83 |
+
st.write("**Research Article Helper** is a tool to interact with research articles by uploading PDFs. Use it to ask questions, generate summaries, and gain insights from scientific documents.")
|
84 |
+
st.write("Built using Streamlit, FAISS, and Groq AI.")
|