Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto")
|
| 9 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 10 |
|
| 11 |
-
|
| 12 |
# Function to build structured input and query the LLM
|
| 13 |
def analyze(
|
| 14 |
albumin, creatinine, glucose, crp, mcv, rdw, alp,
|
|
@@ -21,9 +20,14 @@ def analyze(
|
|
| 21 |
except Exception:
|
| 22 |
bmi = "N/A"
|
| 23 |
|
| 24 |
-
# System-style instruction
|
| 25 |
system_prompt = (
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
- Longevity Vitality Score (out of 100)
|
| 28 |
- Top Priority Areas for Optimization
|
| 29 |
- Key Strengths
|
|
@@ -52,46 +56,45 @@ def analyze(
|
|
| 52 |
- Predicted nutrient needs (iron, B12, folate, copper) framed as optimization
|
| 53 |
- Patterns in WBC/lymphocyte values for general resilience
|
| 54 |
- Predictive wellness trends (non-medical)
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Construct patient profile input
|
| 59 |
patient_input = f"""
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
prompt = system_prompt + "\n" + patient_input
|
| 80 |
|
| 81 |
-
# Call LLM
|
| 82 |
result = pipe(
|
| 83 |
prompt,
|
| 84 |
-
max_new_tokens=
|
| 85 |
do_sample=True,
|
| 86 |
temperature=0.6,
|
| 87 |
return_full_text=False
|
| 88 |
)
|
| 89 |
return result[0]["generated_text"].strip()
|
| 90 |
|
| 91 |
-
|
| 92 |
# Build Gradio UI
|
| 93 |
with gr.Blocks() as demo:
|
| 94 |
-
gr.Markdown("## 🧪
|
| 95 |
|
| 96 |
with gr.Row():
|
| 97 |
albumin = gr.Number(label="Albumin (g/dL)")
|
|
@@ -121,9 +124,8 @@ with gr.Blocks() as demo:
|
|
| 121 |
alp = gr.Number(label="Alkaline Phosphatase (U/L)")
|
| 122 |
|
| 123 |
analyze_btn = gr.Button("🔎 Analyze")
|
| 124 |
-
output = gr.Textbox(label="AI
|
| 125 |
|
| 126 |
-
# Run analysis
|
| 127 |
analyze_btn.click(
|
| 128 |
fn=analyze,
|
| 129 |
inputs=[albumin, creatinine, glucose, crp, mcv, rdw, alp,
|
|
|
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto")
|
| 9 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 10 |
|
|
|
|
| 11 |
# Function to build structured input and query the LLM
|
| 12 |
def analyze(
|
| 13 |
albumin, creatinine, glucose, crp, mcv, rdw, alp,
|
|
|
|
| 20 |
except Exception:
|
| 21 |
bmi = "N/A"
|
| 22 |
|
| 23 |
+
# System-style instruction (non-medical)
|
| 24 |
system_prompt = (
|
| 25 |
+
"""You are a wellness assistant.
|
| 26 |
+
Do NOT provide medical insights, diagnoses, or test recommendations.
|
| 27 |
+
Only use neutral, non-medical, wellness-oriented language (e.g., energy, balance, recovery, nutrition).
|
| 28 |
+
Strictly follow the structure below and generate only these sections with no extra headings:
|
| 29 |
+
|
| 30 |
+
Executive Summary
|
| 31 |
- Longevity Vitality Score (out of 100)
|
| 32 |
- Top Priority Areas for Optimization
|
| 33 |
- Key Strengths
|
|
|
|
| 56 |
- Predicted nutrient needs (iron, B12, folate, copper) framed as optimization
|
| 57 |
- Patterns in WBC/lymphocyte values for general resilience
|
| 58 |
- Predictive wellness trends (non-medical)
|
| 59 |
+
"""
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
# Construct profile input
|
|
|
|
|
|
|
| 63 |
patient_input = f"""
|
| 64 |
+
Patient Profile:
|
| 65 |
+
- Age: {age}
|
| 66 |
+
- Gender: {gender}
|
| 67 |
+
- Height: {height} cm
|
| 68 |
+
- Weight: {weight} kg
|
| 69 |
+
- BMI: {bmi}
|
| 70 |
+
|
| 71 |
+
Lab Values:
|
| 72 |
+
- Albumin: {albumin} g/dL
|
| 73 |
+
- Creatinine: {creatinine} mg/dL
|
| 74 |
+
- Glucose: {glucose} mg/dL
|
| 75 |
+
- C-Reactive Protein: {crp} mg/L
|
| 76 |
+
- Mean Cell Volume: {mcv} fL
|
| 77 |
+
- Red Cell Distribution Width: {rdw} %
|
| 78 |
+
- Alkaline Phosphatase: {alp} U/L
|
| 79 |
+
- White Blood Cell Count: {wbc} K/uL
|
| 80 |
+
- Lymphocyte Percentage: {lymph} %
|
| 81 |
+
"""
|
| 82 |
|
| 83 |
prompt = system_prompt + "\n" + patient_input
|
| 84 |
|
| 85 |
+
# Call LLM
|
| 86 |
result = pipe(
|
| 87 |
prompt,
|
| 88 |
+
max_new_tokens=1200,
|
| 89 |
do_sample=True,
|
| 90 |
temperature=0.6,
|
| 91 |
return_full_text=False
|
| 92 |
)
|
| 93 |
return result[0]["generated_text"].strip()
|
| 94 |
|
|
|
|
| 95 |
# Build Gradio UI
|
| 96 |
with gr.Blocks() as demo:
|
| 97 |
+
gr.Markdown("## 🧪 Wellness Insights AI — Enter Profile Data")
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
albumin = gr.Number(label="Albumin (g/dL)")
|
|
|
|
| 124 |
alp = gr.Number(label="Alkaline Phosphatase (U/L)")
|
| 125 |
|
| 126 |
analyze_btn = gr.Button("🔎 Analyze")
|
| 127 |
+
output = gr.Textbox(label="AI Wellness Assessment", lines=12)
|
| 128 |
|
|
|
|
| 129 |
analyze_btn.click(
|
| 130 |
fn=analyze,
|
| 131 |
inputs=[albumin, creatinine, glucose, crp, mcv, rdw, alp,
|