Spaces:
Sleeping
Sleeping
Update
Browse files- app.py +36 -33
- requirements.txt +2 -1
- youtube_FC_14.py +238 -187
app.py
CHANGED
@@ -5,7 +5,7 @@ from youtube_transcript_api import YouTubeTranscriptApi
|
|
5 |
from langchain_openai import ChatOpenAI
|
6 |
from langchain.agents import AgentExecutor
|
7 |
from langchain.memory import ConversationBufferWindowMemory
|
8 |
-
from
|
9 |
|
10 |
import logging
|
11 |
logging.getLogger().setLevel(logging.ERROR)
|
@@ -13,26 +13,20 @@ logging.getLogger().setLevel(logging.ERROR)
|
|
13 |
import warnings
|
14 |
warnings.filterwarnings("ignore")
|
15 |
|
|
|
|
|
|
|
|
|
16 |
class ChatBot:
|
17 |
def __init__(self):
|
18 |
-
self.youtube_agent =
|
19 |
-
self.api_key = None
|
20 |
-
|
21 |
-
def initialize_agent(self, api_key):
|
22 |
-
if api_key:
|
23 |
-
os.environ['OPENAI_API_KEY'] = api_key
|
24 |
-
openai.api_key = api_key
|
25 |
-
self.api_key = api_key
|
26 |
-
self.youtube_agent = YouTubeAgent()
|
27 |
-
return "API key set successfully. Agent initialized."
|
28 |
-
else:
|
29 |
-
return "Please provide a valid API key."
|
30 |
|
31 |
-
def chat(self, message, history):
|
32 |
-
if not self.youtube_agent:
|
33 |
-
return "Please set your OpenAI API key first."
|
34 |
-
|
35 |
try:
|
|
|
|
|
|
|
|
|
36 |
response = self.youtube_agent.invoke(message)
|
37 |
return response
|
38 |
except Exception as e:
|
@@ -40,15 +34,12 @@ class ChatBot:
|
|
40 |
|
41 |
chatbot = ChatBot() # Create an instance of ChatBot
|
42 |
|
43 |
-
def set_api_key(api_key):
|
44 |
-
return chatbot.initialize_agent(api_key)
|
45 |
-
|
46 |
def user_message(message, history):
|
47 |
return "", history + [[message, None]]
|
48 |
|
49 |
-
def bot_message(history):
|
50 |
user_message = history[-1][0]
|
51 |
-
bot_response = chatbot.chat(user_message, history)
|
52 |
history[-1][1] = bot_response
|
53 |
return history
|
54 |
|
@@ -60,19 +51,33 @@ example_messages = [
|
|
60 |
"What tools are available for use?",
|
61 |
"What is the following video about? https://www.youtube.com/watch?v=dZxbVGhpEkI",
|
62 |
"Can you summarize this video? https://www.youtube.com/watch?v=hM8unyUM6KA",
|
63 |
-
"Extract the main points from this video: https://www.youtube.com/watch?v=UF8uR6Z6KLc"
|
|
|
|
|
64 |
]
|
65 |
|
66 |
with gr.Blocks() as demo:
|
67 |
-
gr.Markdown("
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
|
75 |
-
chatbot_interface = gr.Chatbot()
|
76 |
msg = gr.Textbox(label="Message")
|
77 |
|
78 |
with gr.Row():
|
@@ -82,14 +87,12 @@ with gr.Blocks() as demo:
|
|
82 |
gr.Markdown("## Example Messages")
|
83 |
example_btns = [gr.Button(i) for i in example_messages]
|
84 |
|
85 |
-
api_key_button.click(set_api_key, inputs=api_key_input, outputs=api_key_status)
|
86 |
-
|
87 |
submit_btn.click(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then(
|
88 |
-
bot_message, chatbot_interface, chatbot_interface
|
89 |
)
|
90 |
|
91 |
msg.submit(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then(
|
92 |
-
bot_message, chatbot_interface, chatbot_interface
|
93 |
)
|
94 |
|
95 |
clear_btn.click(lambda: None, None, chatbot_interface, queue=False)
|
|
|
5 |
from langchain_openai import ChatOpenAI
|
6 |
from langchain.agents import AgentExecutor
|
7 |
from langchain.memory import ConversationBufferWindowMemory
|
8 |
+
from FCnew18thJul import YouTubeAgent, set_temperature
|
9 |
|
10 |
import logging
|
11 |
logging.getLogger().setLevel(logging.ERROR)
|
|
|
13 |
import warnings
|
14 |
warnings.filterwarnings("ignore")
|
15 |
|
16 |
+
from dotenv import load_dotenv, find_dotenv
|
17 |
+
_ = load_dotenv(find_dotenv()) # read local .env file
|
18 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
19 |
+
|
20 |
class ChatBot:
|
21 |
def __init__(self):
|
22 |
+
self.youtube_agent = YouTubeAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def chat(self, message, history, temperature):
|
|
|
|
|
|
|
25 |
try:
|
26 |
+
# Set the temperature using the function from FCnew18thJul.py
|
27 |
+
set_temperature(temperature)
|
28 |
+
# Reinitialize the agent to use the new temperature
|
29 |
+
self.youtube_agent = YouTubeAgent()
|
30 |
response = self.youtube_agent.invoke(message)
|
31 |
return response
|
32 |
except Exception as e:
|
|
|
34 |
|
35 |
chatbot = ChatBot() # Create an instance of ChatBot
|
36 |
|
|
|
|
|
|
|
37 |
def user_message(message, history):
|
38 |
return "", history + [[message, None]]
|
39 |
|
40 |
+
def bot_message(history, temperature):
|
41 |
user_message = history[-1][0]
|
42 |
+
bot_response = chatbot.chat(user_message, history, temperature)
|
43 |
history[-1][1] = bot_response
|
44 |
return history
|
45 |
|
|
|
51 |
"What tools are available for use?",
|
52 |
"What is the following video about? https://www.youtube.com/watch?v=dZxbVGhpEkI",
|
53 |
"Can you summarize this video? https://www.youtube.com/watch?v=hM8unyUM6KA",
|
54 |
+
"Extract the main points from this video: https://www.youtube.com/watch?v=UF8uR6Z6KLc",
|
55 |
+
"What are the main challenges discussed in the video? https://www.youtube.com/watch?v=-OSxeoIAs2w&t=4262s",
|
56 |
+
"What is the speakers name in this video? dZxbVGhpEkI"
|
57 |
]
|
58 |
|
59 |
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("""
|
61 |
+
# Chat with YouTube Videos
|
62 |
|
63 |
+
This application provides a comprehensive set of tools for analyzing YouTube videos,
|
64 |
+
extracting information, and answering questions based on video content. It leverages
|
65 |
+
the LangChain library for natural language processing tasks and the YouTube Transcript
|
66 |
+
API for fetching video transcripts.
|
67 |
+
|
68 |
+
Key Features:
|
69 |
+
- Main points summarization in multiple formats
|
70 |
+
- Video content summarization
|
71 |
+
- Question answering based on video content
|
72 |
+
- Flexible AI agent for handling various YouTube video-related tasks
|
73 |
+
|
74 |
+
Simply enter your question or request along with a YouTube video link, and the AI will process and respond accordingly.
|
75 |
+
Adjust the temperature slider to control the creativity of the AI's responses.
|
76 |
+
""")
|
77 |
|
78 |
+
temperature_slider = gr.Slider(minimum=0, maximum=1, step=0.1, label="Temperature", value=0)
|
79 |
|
80 |
+
chatbot_interface = gr.Chatbot(show_copy_button=True)
|
81 |
msg = gr.Textbox(label="Message")
|
82 |
|
83 |
with gr.Row():
|
|
|
87 |
gr.Markdown("## Example Messages")
|
88 |
example_btns = [gr.Button(i) for i in example_messages]
|
89 |
|
|
|
|
|
90 |
submit_btn.click(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then(
|
91 |
+
bot_message, [chatbot_interface, temperature_slider], chatbot_interface
|
92 |
)
|
93 |
|
94 |
msg.submit(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then(
|
95 |
+
bot_message, [chatbot_interface, temperature_slider], chatbot_interface
|
96 |
)
|
97 |
|
98 |
clear_btn.click(lambda: None, None, chatbot_interface, queue=False)
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ langchain-core==0.2.19
|
|
9 |
langchain-openai==0.1.16
|
10 |
langchain-text-splitters==0.2.2
|
11 |
pyperclip==1.9.0
|
12 |
-
openai==1.35.13
|
|
|
|
9 |
langchain-openai==0.1.16
|
10 |
langchain-text-splitters==0.2.2
|
11 |
pyperclip==1.9.0
|
12 |
+
openai==1.35.13
|
13 |
+
python-dotenv
|
youtube_FC_14.py
CHANGED
@@ -1,164 +1,71 @@
|
|
1 |
"""
|
2 |
-
YouTube Video Analysis Module
|
3 |
|
4 |
-
This module provides tools for analyzing YouTube videos,
|
5 |
-
|
6 |
-
processing tasks and the YouTube Transcript
|
|
|
7 |
|
8 |
Classes:
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
|
20 |
import os
|
21 |
import openai
|
22 |
-
from typing import List, Dict, Any
|
23 |
from youtube_transcript_api import YouTubeTranscriptApi
|
24 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
25 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
26 |
from langchain_openai import ChatOpenAI
|
27 |
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
28 |
from langchain.agents import tool, AgentExecutor
|
29 |
-
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
30 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
31 |
from langchain_core.utils.function_calling import convert_to_openai_function
|
32 |
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
33 |
from langchain.agents.format_scratchpad import format_to_openai_functions
|
34 |
from langchain.memory import ConversationBufferWindowMemory
|
35 |
-
from
|
36 |
-
import functools
|
37 |
-
import logging
|
38 |
-
import traceback
|
39 |
-
|
40 |
-
# Set up logging with more detailed format
|
41 |
-
logging.basicConfig(level=logging.INFO,
|
42 |
-
format='%(asctime)s - %(levelname)s - %(name)s - %(filename)s:%(lineno)d - %(message)s')
|
43 |
-
logger = logging.getLogger(__name__)
|
44 |
-
|
45 |
-
# Define a decorator for error logging
|
46 |
-
def log_errors(func):
|
47 |
-
@wraps(func)
|
48 |
-
def wrapper(*args, **kwargs):
|
49 |
-
try:
|
50 |
-
return func(*args, **kwargs)
|
51 |
-
except Exception as e:
|
52 |
-
logger.error(f"Error in {func.__name__}: {str(e)}")
|
53 |
-
logger.error(f"Traceback: {traceback.format_exc()}")
|
54 |
-
raise
|
55 |
-
return wrapper
|
56 |
-
|
57 |
-
class YouTubeTranscriptTool:
|
58 |
-
"""
|
59 |
-
A tool for fetching and processing YouTube video transcripts.
|
60 |
-
|
61 |
-
This class provides methods to retrieve transcripts with or without timestamps,
|
62 |
-
and to split transcripts into manageable chunks.
|
63 |
-
"""
|
64 |
-
|
65 |
-
@staticmethod
|
66 |
-
@tool(return_direct=True)
|
67 |
-
def get_transcript_with_timestamps(youtube_video_id: str, chunk_number: int = 0) -> str:
|
68 |
-
"""
|
69 |
-
Retrieves a YouTube video transcript with timestamps.
|
70 |
-
|
71 |
-
Args:
|
72 |
-
youtube_video_id (str): The ID of the YouTube video.
|
73 |
-
chunk_number (int): The index of the transcript chunk to retrieve.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
str: The requested transcript chunk with timestamps.
|
77 |
-
"""
|
78 |
-
return YouTubeTranscriptTool._get_transcript(youtube_video_id, chunk_number, include_timestamps=True)
|
79 |
-
|
80 |
-
@staticmethod
|
81 |
-
@tool(return_direct=True)
|
82 |
-
def get_transcript_without_timestamps(youtube_video_id: str, chunk_number: int = 0) -> str:
|
83 |
-
"""
|
84 |
-
Retrieves a YouTube video transcript without timestamps.
|
85 |
-
|
86 |
-
Args:
|
87 |
-
youtube_video_id (str): The ID of the YouTube video.
|
88 |
-
chunk_number (int): The index of the transcript chunk to retrieve.
|
89 |
-
|
90 |
-
Returns:
|
91 |
-
str: The requested transcript chunk without timestamps.
|
92 |
-
"""
|
93 |
-
return YouTubeTranscriptTool._get_transcript(youtube_video_id, chunk_number, include_timestamps=False)
|
94 |
-
|
95 |
-
@staticmethod
|
96 |
-
@log_errors
|
97 |
-
def _get_transcript(youtube_video_id: str, chunk_number: int, include_timestamps: bool) -> str:
|
98 |
-
"""
|
99 |
-
Internal method to fetch and process the transcript.
|
100 |
-
|
101 |
-
Args:
|
102 |
-
youtube_video_id (str): The ID of the YouTube video.
|
103 |
-
chunk_number (int): The index of the transcript chunk to retrieve.
|
104 |
-
include_timestamps (bool): Whether to include timestamps in the transcript.
|
105 |
-
|
106 |
-
Returns:
|
107 |
-
str: The processed transcript chunk.
|
108 |
-
|
109 |
-
Raises:
|
110 |
-
ValueError: If the requested chunk number is out of range.
|
111 |
-
"""
|
112 |
-
try:
|
113 |
-
transcript_json = YouTubeTranscriptApi.get_transcript(youtube_video_id)
|
114 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
115 |
-
chunk_size=8192,
|
116 |
-
chunk_overlap=0,
|
117 |
-
separators=[f" {char}" for char in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
|
118 |
-
)
|
119 |
-
|
120 |
-
if include_timestamps:
|
121 |
-
transcript_data = [f"{entry['start']:.2f}: {entry['text']} " for entry in transcript_json]
|
122 |
-
else:
|
123 |
-
transcript_data = [entry['text'] for entry in transcript_json]
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
if chunk_number >= len(transcript_splits):
|
129 |
-
raise ValueError(f"Chunk number {chunk_number} is out of range. Total chunks: {len(transcript_splits)}")
|
130 |
-
|
131 |
-
chunked_text = transcript_splits[chunk_number]
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
logger.error(f"Error in _get_transcript: {str(e)}")
|
136 |
-
return f"Error fetching transcript: {str(e)}"
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
str: Formatted response string.
|
150 |
-
"""
|
151 |
-
if len(transcript_splits) == 1:
|
152 |
-
return f"Note: Complete subtitles returned.\n\nSubtitles:{chunked_text}"
|
153 |
-
elif chunk_number == len(transcript_splits) - 1:
|
154 |
-
return f"Note: Last chunk of subtitles returned.\n\nSubtitles:{chunked_text}"
|
155 |
-
else:
|
156 |
-
return f"Note: Partial subtitles returned. To get the next chunk, use chunk_number = {chunk_number + 1}.\n\nSubtitles:{chunked_text}"
|
157 |
-
|
158 |
-
class Points(BaseModel):
|
159 |
"""Pydantic model for representing extracted points."""
|
160 |
-
|
161 |
-
|
162 |
emoji: str = Field(description="An emoji that represents or summarizes the main point.")
|
163 |
timestamp: float = Field(description="The timestamp (in floating-point number) from the video where the main point is mentioned.")
|
164 |
|
@@ -170,16 +77,19 @@ class MainPointsExtractor:
|
|
170 |
using natural language processing techniques.
|
171 |
"""
|
172 |
|
173 |
-
class
|
174 |
"""Pydantic model for representing a collection of points."""
|
175 |
-
points: List[
|
|
|
|
|
|
|
|
|
176 |
|
177 |
@staticmethod
|
178 |
@tool(return_direct=True)
|
179 |
-
@log_errors
|
180 |
def get_youtube_video_main_points(youtube_video_id: str) -> str:
|
181 |
"""
|
182 |
-
Extracts and formats main points from
|
183 |
|
184 |
Args:
|
185 |
youtube_video_id (str): The ID of the YouTube video.
|
@@ -189,14 +99,14 @@ class MainPointsExtractor:
|
|
189 |
"""
|
190 |
try:
|
191 |
transcript = MainPointsExtractor._get_youtube_video_transcript(youtube_video_id)
|
192 |
-
|
193 |
-
|
|
|
|
|
194 |
except Exception as e:
|
195 |
-
|
196 |
-
return f"Error extracting main points: {str(e)}"
|
197 |
|
198 |
@staticmethod
|
199 |
-
@log_errors
|
200 |
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
201 |
"""
|
202 |
Fetches the transcript for a YouTube video.
|
@@ -215,47 +125,66 @@ class MainPointsExtractor:
|
|
215 |
transcript_data = [f"{entry['start']:.2f}: {entry['text']} " for entry in transcript_json]
|
216 |
return "".join(transcript_data)
|
217 |
except Exception as e:
|
218 |
-
logger.error(f"Error fetching transcript: {str(e)}")
|
219 |
raise
|
220 |
|
221 |
@staticmethod
|
222 |
-
|
223 |
-
def _extract_main_points(transcript: str) -> List[Dict[str, Any]]:
|
224 |
"""
|
225 |
Extracts main points from the transcript using NLP techniques.
|
226 |
-
|
227 |
-
This method
|
228 |
|
229 |
Args:
|
230 |
transcript (str): The full transcript of the video.
|
231 |
-
|
232 |
Returns:
|
233 |
List[Dict[str, Any]]: A list of dictionaries containing extracted main points.
|
234 |
"""
|
235 |
-
main_points_extraction_function = [convert_to_openai_function(
|
236 |
|
237 |
-
model = ChatOpenAI(temperature=
|
238 |
-
extraction_model = model.bind(functions=main_points_extraction_function, function_call={"name": "Info"})
|
239 |
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=0, chunk_size=8192, separators=[f" {char}" for char in "123456789"])
|
244 |
|
245 |
prep = RunnableLambda(lambda x: [{"input": doc} for doc in text_splitter.split_text(x)])
|
246 |
|
247 |
-
chain = prep | extraction_chain.map() | MainPointsExtractor._flatten
|
248 |
|
249 |
-
|
|
|
|
|
250 |
|
251 |
@staticmethod
|
252 |
-
@log_errors
|
253 |
def _flatten(matrix):
|
254 |
"""Flattens a 2D list into a 1D list."""
|
255 |
return [item for row in matrix for item in row]
|
256 |
|
257 |
@staticmethod
|
258 |
-
@log_errors
|
259 |
def _format_youtube_comment(json_data: List[Dict[str, Any]]) -> str:
|
260 |
"""
|
261 |
Formats extracted main points into a YouTube-style comment.
|
@@ -276,11 +205,18 @@ class MainPointsExtractor:
|
|
276 |
for entry in json_data:
|
277 |
timestamp = _format_timestamp(entry['timestamp'])
|
278 |
emoji = entry['emoji']
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
return formatted_comment.strip()
|
|
|
|
|
284 |
|
285 |
class Summary(BaseModel):
|
286 |
"""Pydantic model for representing extracted summary."""
|
@@ -300,7 +236,6 @@ class SummaryExtractor:
|
|
300 |
|
301 |
@staticmethod
|
302 |
@tool(return_direct=False)
|
303 |
-
@log_errors
|
304 |
def get_youtube_video_summary(youtube_video_id: str) -> str:
|
305 |
"""
|
306 |
Extracts and formats a summary from a YouTube video transcript.
|
@@ -316,11 +251,9 @@ class SummaryExtractor:
|
|
316 |
summary = SummaryExtractor._extract_summary(transcript)
|
317 |
return SummaryExtractor._format_summary(summary)
|
318 |
except Exception as e:
|
319 |
-
logger.error(f"Error in get_youtube_video_summary: {str(e)}")
|
320 |
return f"Error extracting summary: {str(e)}"
|
321 |
|
322 |
@staticmethod
|
323 |
-
@log_errors
|
324 |
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
325 |
"""
|
326 |
Fetches the transcript for a YouTube video.
|
@@ -339,11 +272,9 @@ class SummaryExtractor:
|
|
339 |
transcript_data = [entry['text'] for entry in transcript_json]
|
340 |
return " ".join(transcript_data)
|
341 |
except Exception as e:
|
342 |
-
logger.error(f"Error fetching transcript: {str(e)}")
|
343 |
raise
|
344 |
|
345 |
@staticmethod
|
346 |
-
@functools.lru_cache(maxsize=16)
|
347 |
def _extract_summary(transcript: str) -> List[Summary]:
|
348 |
"""
|
349 |
Extracts a summary from a YouTube video transcript.
|
@@ -356,8 +287,9 @@ class SummaryExtractor:
|
|
356 |
"""
|
357 |
summary_extraction_function = [convert_to_openai_function(SummaryExtractor.Info)]
|
358 |
|
359 |
-
model = ChatOpenAI(temperature=
|
360 |
-
|
|
|
361 |
|
362 |
prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
|
363 |
|
@@ -382,6 +314,128 @@ class SummaryExtractor:
|
|
382 |
"""
|
383 |
return "\n\n".join([s["summary"] for s in summaries])
|
384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
class YouTubeAgent:
|
386 |
"""
|
387 |
An agent for interacting with YouTube videos and processing user queries.
|
@@ -392,28 +446,33 @@ class YouTubeAgent:
|
|
392 |
|
393 |
def __init__(self):
|
394 |
"""Initializes the YouTubeAgent with necessary tools and components."""
|
|
|
395 |
self.tools = [
|
396 |
-
YouTubeTranscriptTool.get_transcript_with_timestamps,
|
397 |
-
YouTubeTranscriptTool.get_transcript_without_timestamps,
|
398 |
MainPointsExtractor.get_youtube_video_main_points,
|
399 |
-
SummaryExtractor.get_youtube_video_summary
|
|
|
400 |
]
|
|
|
401 |
self.sys_message = "You are a helpful assistant."
|
|
|
402 |
self.functions = [convert_to_openai_function(f) for f in self.tools]
|
403 |
-
|
|
|
|
|
404 |
self.prompt = ChatPromptTemplate.from_messages([
|
405 |
("system", self.sys_message),
|
406 |
MessagesPlaceholder(variable_name="history"),
|
407 |
("user", "{input}"),
|
408 |
MessagesPlaceholder(variable_name="agent_scratchpad")
|
409 |
])
|
|
|
410 |
self.agent_chain = RunnablePassthrough.assign(
|
411 |
agent_scratchpad= lambda x: format_to_openai_functions(x["intermediate_steps"])
|
412 |
) | self.prompt | self.model | OpenAIFunctionsAgentOutputParser()
|
|
|
413 |
self.memory = ConversationBufferWindowMemory(k=3, return_messages=True, memory_key="history")
|
414 |
self.agent_executor = AgentExecutor(agent=self.agent_chain, tools=self.tools, memory=self.memory)
|
415 |
-
|
416 |
-
@log_errors
|
417 |
def invoke(self, input_text: str) -> str:
|
418 |
"""
|
419 |
Processes a user input and returns the agent's response.
|
@@ -428,16 +487,8 @@ class YouTubeAgent:
|
|
428 |
result = self.agent_executor.invoke({"input": input_text})
|
429 |
return result['output']
|
430 |
except Exception as e:
|
431 |
-
logger.error(f"Error in YouTubeAgent.invoke: {str(e)}")
|
432 |
return f"An error occurred: {str(e)}"
|
433 |
|
434 |
-
#
|
435 |
-
#
|
436 |
-
#
|
437 |
-
# video_link = "https://www.youtube.com/watch?v=dZxbVGhpEkI"
|
438 |
-
# try:
|
439 |
-
# main_points = youtube_agent.invoke(f"Can you get summary of the following video {video_link}")
|
440 |
-
# except Exception as e:
|
441 |
-
# logger.error(f"An error occurred during processing: {str(e)}")
|
442 |
-
# print(f"An error occurred: {str(e)}")
|
443 |
-
|
|
|
1 |
"""
|
2 |
+
YouTube Video Analysis and Interaction Module
|
3 |
|
4 |
+
This module provides a comprehensive set of tools for analyzing YouTube videos,
|
5 |
+
extracting information, and answering questions based on video content. It leverages
|
6 |
+
the LangChain library for natural language processing tasks and the YouTube Transcript
|
7 |
+
API for fetching video transcripts.
|
8 |
|
9 |
Classes:
|
10 |
+
MainPointsExtractor:
|
11 |
+
Extracts and formats main points from YouTube video transcripts.
|
12 |
+
Timestamps are formatted for direct use in YouTube comments, enabling clickable
|
13 |
+
links to specific video sections when pasted.
|
14 |
+
SummaryExtractor:
|
15 |
+
Handles the extraction and formatting of video summaries.
|
16 |
+
QuestionAnswerExtractor:
|
17 |
+
Processes user questions and extracts answers from video transcripts.
|
18 |
+
YouTubeAgent:
|
19 |
+
Manages the overall agent setup for interacting with YouTube videos and processing user queries.
|
20 |
+
|
21 |
+
Key Features:
|
22 |
+
- Main points summarization in multiple formats
|
23 |
+
- Video content summarization
|
24 |
+
- Question answering based on video content
|
25 |
+
- Flexible AI agent for handling various YouTube video-related tasks
|
26 |
"""
|
27 |
|
28 |
import os
|
29 |
import openai
|
30 |
+
from typing import List, Dict, Any, Union, Type
|
31 |
from youtube_transcript_api import YouTubeTranscriptApi
|
32 |
from langchain_core.pydantic_v1 import BaseModel, Field
|
33 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
34 |
from langchain_openai import ChatOpenAI
|
35 |
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
36 |
from langchain.agents import tool, AgentExecutor
|
37 |
+
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser, JsonOutputFunctionsParser
|
38 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
39 |
from langchain_core.utils.function_calling import convert_to_openai_function
|
40 |
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
41 |
from langchain.agents.format_scratchpad import format_to_openai_functions
|
42 |
from langchain.memory import ConversationBufferWindowMemory
|
43 |
+
from dotenv import load_dotenv, find_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
_ = load_dotenv(find_dotenv()) # read local .env file
|
46 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def get_temperature():
|
49 |
+
return 0 #Default value
|
|
|
|
|
50 |
|
51 |
+
def set_temperature(new_temperature):
|
52 |
+
global get_temperature
|
53 |
+
def new_get_temperature():
|
54 |
+
return new_temperature
|
55 |
+
get_temperature = new_get_temperature
|
56 |
+
# print(f"Temperature set to: {get_temperature()}")
|
57 |
|
58 |
+
class Points_1(BaseModel):
|
59 |
+
"""Pydantic model for representing extracted points from Youtube-Transcript"""
|
60 |
+
timestamp: float = Field(description="The timestamp (in floating-point number) of when main points are discussed or talked about in the video.")
|
61 |
+
main_point: str = Field(description="A title for Main point.")
|
62 |
+
summary: str = Field(description="A summary of main points discussed at that timestamp. End with fullstop.")
|
63 |
+
emoji: str = Field(description="An emoji that matches the summary.")
|
64 |
|
65 |
+
class Points_2(BaseModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
"""Pydantic model for representing extracted points."""
|
67 |
+
main_point: str = Field(description="The main topic, theme, or subject extracted from the subtitle.")
|
68 |
+
summary: str = Field(description="The context or brief explanation of the main point.")
|
69 |
emoji: str = Field(description="An emoji that represents or summarizes the main point.")
|
70 |
timestamp: float = Field(description="The timestamp (in floating-point number) from the video where the main point is mentioned.")
|
71 |
|
|
|
77 |
using natural language processing techniques.
|
78 |
"""
|
79 |
|
80 |
+
class Info_1(BaseModel):
|
81 |
"""Pydantic model for representing a collection of points."""
|
82 |
+
points: List[Points_1]
|
83 |
+
|
84 |
+
class Info_2(BaseModel):
|
85 |
+
"""Pydantic model for representing a collection of points."""
|
86 |
+
points: List[Points_2]
|
87 |
|
88 |
@staticmethod
|
89 |
@tool(return_direct=True)
|
|
|
90 |
def get_youtube_video_main_points(youtube_video_id: str) -> str:
|
91 |
"""
|
92 |
+
Extracts and formats main points with Timestamps from YouTube video transcripts. Timestamps are formatted for direct use in YouTube comments, enabling clickable links to specific video sections when pasted.
|
93 |
|
94 |
Args:
|
95 |
youtube_video_id (str): The ID of the YouTube video.
|
|
|
99 |
"""
|
100 |
try:
|
101 |
transcript = MainPointsExtractor._get_youtube_video_transcript(youtube_video_id)
|
102 |
+
main_points_1 = MainPointsExtractor._extract_main_points(transcript, MainPointsExtractor.Info_1)
|
103 |
+
main_points_2 = MainPointsExtractor._extract_main_points(transcript, MainPointsExtractor.Info_2)
|
104 |
+
formatted_output = f"""Main points extracted from YouTube video (ID: {youtube_video_id})\nStyle_1:\n```\n{main_points_2}\n```\nStyle_2:\n```\n{main_points_1}\n```\nChoose the style that best suits your needs for presenting the main points of the video."""
|
105 |
+
return formatted_output
|
106 |
except Exception as e:
|
107 |
+
raise
|
|
|
108 |
|
109 |
@staticmethod
|
|
|
110 |
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
111 |
"""
|
112 |
Fetches the transcript for a YouTube video.
|
|
|
125 |
transcript_data = [f"{entry['start']:.2f}: {entry['text']} " for entry in transcript_json]
|
126 |
return "".join(transcript_data)
|
127 |
except Exception as e:
|
|
|
128 |
raise
|
129 |
|
130 |
@staticmethod
|
131 |
+
def _extract_main_points(transcript: str, info_model: Union[Type[Info_1], Type[Info_2]]) -> List[Dict[str, Any]]:
|
|
|
132 |
"""
|
133 |
Extracts main points from the transcript using NLP techniques.
|
134 |
+
|
135 |
+
This method maintains a conversation history to provide context for subsequent calls.
|
136 |
|
137 |
Args:
|
138 |
transcript (str): The full transcript of the video.
|
139 |
+
|
140 |
Returns:
|
141 |
List[Dict[str, Any]]: A list of dictionaries containing extracted main points.
|
142 |
"""
|
143 |
+
main_points_extraction_function = [convert_to_openai_function(info_model)]
|
144 |
|
145 |
+
model = ChatOpenAI(temperature=get_temperature())
|
|
|
146 |
|
147 |
+
extraction_model = model.bind(functions=main_points_extraction_function)
|
148 |
+
|
149 |
+
system_message = f"""
|
150 |
+
You are an AI assistant that extracts info from video transcripts.
|
151 |
+
When extracting info, ensure that:
|
152 |
+
1. Each point has a unique timestamp.
|
153 |
|
154 |
+
In addition to these specific requirements, you have the authority to make other improvements as you see fit. This may include:
|
155 |
+
|
156 |
+
- Refining the summaries for clarity and conciseness
|
157 |
+
- Adjusting emoji choices to better represent the content
|
158 |
+
- Reorganizing points for better logical flow
|
159 |
+
- Removing redundant information
|
160 |
+
- Adding context where necessary
|
161 |
+
|
162 |
+
Your goal is to produce a refined and accurate representation of the main points from the video transcript. Use your judgment to balance adherence to the specific rules with overall improvement of the extracted information.
|
163 |
+
"""
|
164 |
+
|
165 |
+
prompt = ChatPromptTemplate.from_messages([
|
166 |
+
("system", system_message),
|
167 |
+
("human", "{input}")
|
168 |
+
])
|
169 |
+
|
170 |
+
extraction_chain = prompt | extraction_model | JsonKeyOutputFunctionsParser(key_name="points")
|
171 |
+
|
172 |
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=0, chunk_size=8192, separators=[f" {char}" for char in "123456789"])
|
173 |
|
174 |
prep = RunnableLambda(lambda x: [{"input": doc} for doc in text_splitter.split_text(x)])
|
175 |
|
176 |
+
chain = prep | extraction_chain.map() | MainPointsExtractor._flatten | MainPointsExtractor._format_youtube_comment
|
177 |
|
178 |
+
result_1 = chain.invoke(transcript)
|
179 |
+
|
180 |
+
return result_1
|
181 |
|
182 |
@staticmethod
|
|
|
183 |
def _flatten(matrix):
|
184 |
"""Flattens a 2D list into a 1D list."""
|
185 |
return [item for row in matrix for item in row]
|
186 |
|
187 |
@staticmethod
|
|
|
188 |
def _format_youtube_comment(json_data: List[Dict[str, Any]]) -> str:
|
189 |
"""
|
190 |
Formats extracted main points into a YouTube-style comment.
|
|
|
205 |
for entry in json_data:
|
206 |
timestamp = _format_timestamp(entry['timestamp'])
|
207 |
emoji = entry['emoji']
|
208 |
+
summary = entry['summary']
|
209 |
+
|
210 |
+
if entry['main_point'].endswith('.'):
|
211 |
+
point = entry['main_point'][:-1]
|
212 |
+
else:
|
213 |
+
point = entry['main_point']
|
214 |
+
|
215 |
+
formatted_comment += f"{timestamp} {emoji} {point}: {summary}\n"
|
216 |
|
217 |
return formatted_comment.strip()
|
218 |
+
|
219 |
+
#######################################################################################################################################
|
220 |
|
221 |
class Summary(BaseModel):
|
222 |
"""Pydantic model for representing extracted summary."""
|
|
|
236 |
|
237 |
@staticmethod
|
238 |
@tool(return_direct=False)
|
|
|
239 |
def get_youtube_video_summary(youtube_video_id: str) -> str:
|
240 |
"""
|
241 |
Extracts and formats a summary from a YouTube video transcript.
|
|
|
251 |
summary = SummaryExtractor._extract_summary(transcript)
|
252 |
return SummaryExtractor._format_summary(summary)
|
253 |
except Exception as e:
|
|
|
254 |
return f"Error extracting summary: {str(e)}"
|
255 |
|
256 |
@staticmethod
|
|
|
257 |
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
258 |
"""
|
259 |
Fetches the transcript for a YouTube video.
|
|
|
272 |
transcript_data = [entry['text'] for entry in transcript_json]
|
273 |
return " ".join(transcript_data)
|
274 |
except Exception as e:
|
|
|
275 |
raise
|
276 |
|
277 |
@staticmethod
|
|
|
278 |
def _extract_summary(transcript: str) -> List[Summary]:
|
279 |
"""
|
280 |
Extracts a summary from a YouTube video transcript.
|
|
|
287 |
"""
|
288 |
summary_extraction_function = [convert_to_openai_function(SummaryExtractor.Info)]
|
289 |
|
290 |
+
model = ChatOpenAI(temperature=get_temperature())
|
291 |
+
|
292 |
+
extraction_model = model.bind(functions=summary_extraction_function)
|
293 |
|
294 |
prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
|
295 |
|
|
|
314 |
"""
|
315 |
return "\n\n".join([s["summary"] for s in summaries])
|
316 |
|
317 |
+
#############################################################################################################################################################
|
318 |
+
|
319 |
+
class Answer(BaseModel):
|
320 |
+
"""Pydantic model for representing an answer to a question."""
|
321 |
+
answer: str = Field(description="The answer to the user's question based on the video transcript.")
|
322 |
+
confidence: float = Field(description="A confidence score between 0 and 1 indicating how certain the model is about the answer.")
|
323 |
+
|
324 |
+
class QuestionAnswerExtractor:
|
325 |
+
"""
|
326 |
+
A tool for answering questions about YouTube videos based on their transcripts.
|
327 |
+
|
328 |
+
This class provides methods to process transcripts and generate answers to user questions
|
329 |
+
using natural language processing techniques.
|
330 |
+
"""
|
331 |
+
|
332 |
+
class Info(BaseModel):
|
333 |
+
"""Pydantic model for representing a collection of answers."""
|
334 |
+
answers: List[Answer]
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
@tool(return_direct=True)
|
338 |
+
def get_answer(youtube_video_id: str, question: str) -> str:
|
339 |
+
"""
|
340 |
+
Answers a question about a YouTube video based on its transcript.
|
341 |
+
|
342 |
+
Args:
|
343 |
+
youtube_video_id (str): The ID of the YouTube video.
|
344 |
+
question (str): The user's question about the video.
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
str: Formatted string containing the answer to the user's question.
|
348 |
+
"""
|
349 |
+
try:
|
350 |
+
transcript = QuestionAnswerExtractor._get_youtube_video_transcript(youtube_video_id)
|
351 |
+
answer = QuestionAnswerExtractor._extract_answer(transcript, question)
|
352 |
+
return QuestionAnswerExtractor._format_answer(answer)
|
353 |
+
except Exception as e:
|
354 |
+
return f"Error answering question: {str(e)}"
|
355 |
+
|
356 |
+
@staticmethod
|
357 |
+
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
358 |
+
"""
|
359 |
+
Fetches the transcript for a YouTube video.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
youtube_video_id (str): The ID of the YouTube video.
|
363 |
+
|
364 |
+
Returns:
|
365 |
+
str: The full transcript of the video.
|
366 |
+
|
367 |
+
Raises:
|
368 |
+
Exception: If there's an error fetching the transcript.
|
369 |
+
"""
|
370 |
+
try:
|
371 |
+
transcript_json = YouTubeTranscriptApi.get_transcript(youtube_video_id)
|
372 |
+
transcript_data = [entry['text'] for entry in transcript_json]
|
373 |
+
return " ".join(transcript_data)
|
374 |
+
except Exception as e:
|
375 |
+
raise
|
376 |
+
|
377 |
+
@staticmethod
|
378 |
+
def _extract_answer(transcript: str, question: str) -> List[Answer]:
|
379 |
+
"""
|
380 |
+
Extracts an answer to the user's question from the YouTube video transcript.
|
381 |
+
|
382 |
+
Args:
|
383 |
+
transcript (str): The full transcript of the video.
|
384 |
+
question (str): The user's question about the video.
|
385 |
+
|
386 |
+
Returns:
|
387 |
+
List[Answer]: A list of Answer objects containing the extracted answers.
|
388 |
+
"""
|
389 |
+
answer_extraction_function = [convert_to_openai_function(QuestionAnswerExtractor.Info)]
|
390 |
+
|
391 |
+
model = ChatOpenAI(temperature=get_temperature())
|
392 |
+
extraction_model = model.bind(functions=answer_extraction_function, function_call={"name": "Info"})
|
393 |
+
|
394 |
+
prompt = ChatPromptTemplate.from_messages([
|
395 |
+
("system", "You are an AI assistant tasked with answering questions about a video based on its transcript."),
|
396 |
+
("human", "Transcript: {transcript}\n\nQuestion: {question}\n\nProvide an answer to the question based on the transcript, along with a confidence score.")
|
397 |
+
])
|
398 |
+
|
399 |
+
extraction_chain = prompt | extraction_model | JsonKeyOutputFunctionsParser(key_name="answers")
|
400 |
+
|
401 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=192, chunk_size=8000, separators=[f" {char}" for char in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"])
|
402 |
+
|
403 |
+
def prepare_input(x):
|
404 |
+
chunks = text_splitter.split_text(x['transcript'])
|
405 |
+
return [{"transcript": chunk, "question": x['question']} for chunk in chunks]
|
406 |
+
|
407 |
+
prep = RunnableLambda(prepare_input)
|
408 |
+
|
409 |
+
chain = prep | extraction_chain.map() | QuestionAnswerExtractor._flatten
|
410 |
+
|
411 |
+
return chain.invoke({"transcript": transcript, "question": question})
|
412 |
+
|
413 |
+
@staticmethod
|
414 |
+
def _flatten(matrix):
|
415 |
+
"""Flattens a 2D list into a 1D list."""
|
416 |
+
return [item for row in matrix for item in row]
|
417 |
+
|
418 |
+
@staticmethod
|
419 |
+
def _format_answer(answers: List[Answer]) -> str:
|
420 |
+
"""
|
421 |
+
Formats the list of answers into a single string.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
answers (List[Answer]): List of Answer objects.
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
str: A formatted string containing the best answer and its confidence score.
|
428 |
+
"""
|
429 |
+
if not answers:
|
430 |
+
return "I couldn't find an answer to your question based on the video transcript."
|
431 |
+
|
432 |
+
# Sort answers by confidence score and take the best one
|
433 |
+
best_answer = max(answers, key=lambda x: x['confidence'])
|
434 |
+
|
435 |
+
return f"{best_answer['answer']}({best_answer['confidence']:.2f})"
|
436 |
+
|
437 |
+
#######################################################################################################################################
|
438 |
+
|
439 |
class YouTubeAgent:
|
440 |
"""
|
441 |
An agent for interacting with YouTube videos and processing user queries.
|
|
|
446 |
|
447 |
def __init__(self):
|
448 |
"""Initializes the YouTubeAgent with necessary tools and components."""
|
449 |
+
|
450 |
self.tools = [
|
|
|
|
|
451 |
MainPointsExtractor.get_youtube_video_main_points,
|
452 |
+
SummaryExtractor.get_youtube_video_summary,
|
453 |
+
QuestionAnswerExtractor.get_answer
|
454 |
]
|
455 |
+
|
456 |
self.sys_message = "You are a helpful assistant."
|
457 |
+
|
458 |
self.functions = [convert_to_openai_function(f) for f in self.tools]
|
459 |
+
|
460 |
+
self.model = ChatOpenAI(temperature=get_temperature()).bind(functions=self.functions)
|
461 |
+
|
462 |
self.prompt = ChatPromptTemplate.from_messages([
|
463 |
("system", self.sys_message),
|
464 |
MessagesPlaceholder(variable_name="history"),
|
465 |
("user", "{input}"),
|
466 |
MessagesPlaceholder(variable_name="agent_scratchpad")
|
467 |
])
|
468 |
+
|
469 |
self.agent_chain = RunnablePassthrough.assign(
|
470 |
agent_scratchpad= lambda x: format_to_openai_functions(x["intermediate_steps"])
|
471 |
) | self.prompt | self.model | OpenAIFunctionsAgentOutputParser()
|
472 |
+
|
473 |
self.memory = ConversationBufferWindowMemory(k=3, return_messages=True, memory_key="history")
|
474 |
self.agent_executor = AgentExecutor(agent=self.agent_chain, tools=self.tools, memory=self.memory)
|
475 |
+
|
|
|
476 |
def invoke(self, input_text: str) -> str:
|
477 |
"""
|
478 |
Processes a user input and returns the agent's response.
|
|
|
487 |
result = self.agent_executor.invoke({"input": input_text})
|
488 |
return result['output']
|
489 |
except Exception as e:
|
|
|
490 |
return f"An error occurred: {str(e)}"
|
491 |
|
492 |
+
# youtube_agent = YouTubeAgent()
|
493 |
+
# video_link = "https://www.youtube.com/watch?v=-OSxeoIAs2w"
|
494 |
+
# main_points = youtube_agent.invoke(f"The race involves which challenges in the following video {video_link}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|