Spaces:
Running
Running
George
commited on
Commit
•
e42312a
1
Parent(s):
4dbba62
add app.py
Browse files- app.py +89 -0
- requirements.txt +2 -1
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import khandy
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from insectid import InsectDetector
|
7 |
+
from insectid import InsectIdentifier
|
8 |
+
|
9 |
+
|
10 |
+
def inference(filename):
|
11 |
+
detector = InsectDetector()
|
12 |
+
identifier = InsectIdentifier()
|
13 |
+
image = khandy.imread(filename)
|
14 |
+
|
15 |
+
if image is None:
|
16 |
+
return None
|
17 |
+
|
18 |
+
if max(image.shape[:2]) > 1280:
|
19 |
+
image = khandy.resize_image_long(image, 1280)
|
20 |
+
|
21 |
+
image_for_draw = image.copy()
|
22 |
+
image_height, image_width = image.shape[:2]
|
23 |
+
boxes, confs, classes = detector.detect(image)
|
24 |
+
|
25 |
+
for box, conf, class_ind in zip(boxes, confs, classes):
|
26 |
+
box = box.astype(np.int32)
|
27 |
+
box_width = box[2] - box[0] + 1
|
28 |
+
box_height = box[3] - box[1] + 1
|
29 |
+
|
30 |
+
if box_width < 30 or box_height < 30:
|
31 |
+
continue
|
32 |
+
|
33 |
+
cropped = khandy.crop_or_pad(image, box[0], box[1], box[2], box[3])
|
34 |
+
results = identifier.identify(cropped)
|
35 |
+
print(results[0])
|
36 |
+
prob = results[0]['probability']
|
37 |
+
|
38 |
+
if prob < 0.10:
|
39 |
+
text = 'Unknown'
|
40 |
+
else:
|
41 |
+
text = '{}: {:.2f}%'.format(
|
42 |
+
results[0]['latin_name'],
|
43 |
+
100.0 * results[0]['probability']
|
44 |
+
)
|
45 |
+
|
46 |
+
position = [box[0] + 2, box[1] - 20]
|
47 |
+
position[0] = min(max(position[0], 0), image_width)
|
48 |
+
position[1] = min(max(position[1], 0), image_height)
|
49 |
+
cv2.rectangle(
|
50 |
+
image_for_draw,
|
51 |
+
(box[0], box[1]),
|
52 |
+
(box[2], box[3]),
|
53 |
+
(0, 255, 0),
|
54 |
+
2
|
55 |
+
)
|
56 |
+
|
57 |
+
image_for_draw = khandy.draw_text(
|
58 |
+
image_for_draw,
|
59 |
+
text,
|
60 |
+
position,
|
61 |
+
font='simsun.ttc',
|
62 |
+
font_size=15
|
63 |
+
)
|
64 |
+
|
65 |
+
return Image.fromarray(image_for_draw[:, :, ::-1], mode='RGB')
|
66 |
+
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
with gr.Tab("Image"):
|
70 |
+
gr.Markdown("## Insect Inference on Image")
|
71 |
+
with gr.Row():
|
72 |
+
image_input = gr.Image(
|
73 |
+
type='filepath',
|
74 |
+
label="Input Image",
|
75 |
+
source="upload"
|
76 |
+
)
|
77 |
+
|
78 |
+
image_output = gr.Image(
|
79 |
+
type='pil',
|
80 |
+
label="Output Image",
|
81 |
+
source="canvas"
|
82 |
+
)
|
83 |
+
|
84 |
+
text_button = gr.Button("Detect")
|
85 |
+
|
86 |
+
text_button.click(inference, inputs=image_input, outputs=image_output)
|
87 |
+
|
88 |
+
|
89 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ numpy>=1.11.1
|
|
3 |
lxml
|
4 |
requests
|
5 |
onnxruntime
|
6 |
-
Pillow
|
|
|
|
3 |
lxml
|
4 |
requests
|
5 |
onnxruntime
|
6 |
+
Pillow
|
7 |
+
gradio
|