hoyoMusic / app.py
MuGeminorum
not use pdf2image
5265c7c
raw
history blame
6.36 kB
import re
import os
import time
import torch
import shutil
import argparse
import gradio as gr
from utils import *
from config import *
from render import *
from music21 import converter
from transformers import GPT2Config
import warnings
warnings.filterwarnings('ignore')
def abc_to_midi(abc_content, output_midi_path):
# 解析 ABC 格式的乐谱
score = converter.parse(abc_content)
# 将乐谱保存为 MIDI 文件
score.write('midi', fp=output_midi_path)
return output_midi_path
def get_args(parser):
parser.add_argument('-num_tunes', type=int, default=1,
help='the number of independently computed returned tunes')
parser.add_argument('-max_patch', type=int, default=128,
help='integer to define the maximum length in tokens of each tune')
parser.add_argument('-top_p', type=float, default=0.8,
help='float to define the tokens that are within the sample operation of text generation')
parser.add_argument('-top_k', type=int, default=8,
help='integer to define the tokens that are within the sample operation of text generation')
parser.add_argument('-temperature', type=float, default=1.2,
help='the temperature of the sampling operation')
parser.add_argument('-seed', type=int, default=None,
help='seed for randomstate')
parser.add_argument('-show_control_code', type=bool,
default=True, help='whether to show control code')
args = parser.parse_args()
return args
def generate_abc(args, region):
patchilizer = Patchilizer()
patch_config = GPT2Config(
num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1
)
char_config = GPT2Config(
num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128
)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
filename = WEIGHT_PATH
if os.path.exists(filename):
print(f"Weights already exist at '{filename}'. Loading...")
else:
download()
checkpoint = torch.load(filename, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model'])
model = model.to(device)
model.eval()
prompt = template(region)
tunes = ""
num_tunes = args.num_tunes
max_patch = args.max_patch
top_p = args.top_p
top_k = args.top_k
temperature = args.temperature
seed = args.seed
show_control_code = args.show_control_code
print(" HYPERPARAMETERS ".center(60, "#"), '\n')
args = vars(args)
for key in args.keys():
print(f'{key}: {str(args[key])}')
print('\n', " OUTPUT TUNES ".center(60, "#"))
start_time = time.time()
for i in range(num_tunes):
tune = f"X:{str(i + 1)}\n{prompt}"
lines = re.split(r'(\n)', tune)
tune = ""
skip = False
for line in lines:
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
if not skip:
print(line, end="")
tune += line
skip = False
else:
skip = True
input_patches = torch.tensor(
[patchilizer.encode(prompt, add_special_patches=True)[:-1]],
device=device
)
if tune == "":
tokens = None
else:
prefix = patchilizer.decode(input_patches[0])
remaining_tokens = prompt[len(prefix):]
tokens = torch.tensor(
[patchilizer.bos_token_id]+[ord(c) for c in remaining_tokens],
device=device
)
while input_patches.shape[1] < max_patch:
predicted_patch, seed = model.generate(
input_patches,
tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
seed=seed
)
tokens = None
if predicted_patch[0] != patchilizer.eos_token_id:
next_bar = patchilizer.decode([predicted_patch])
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
print(next_bar, end="")
tune += next_bar
if next_bar == "":
break
next_bar = remaining_tokens+next_bar
remaining_tokens = ""
predicted_patch = torch.tensor(
patchilizer.bar2patch(next_bar),
device=device
).unsqueeze(0)
input_patches = torch.cat(
[input_patches, predicted_patch.unsqueeze(0)],
dim=1
)
else:
break
tunes += f"{tune}\n\n"
print("\n")
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
create_dir('./tmp')
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
out_midi = abc_to_midi(tunes, f'./tmp/[{region}]{timestamp}.mid')
png_file = midi2png(out_midi)
wav_file = midi2wav(out_midi)
return tunes, out_midi, png_file, wav_file
def inference(region):
if os.path.exists('./tmp'):
shutil.rmtree('./tmp')
parser = argparse.ArgumentParser()
args = get_args(parser)
return generate_abc(args, region)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
region_opt = gr.Dropdown(
choices=[
'Mondstadt', 'Liyue', 'Inazuma', 'Sumeru', 'Fontaine'
],
value='Liyue',
label='Region'
)
gen_btn = gr.Button("Generate")
with gr.Column():
wav_output = gr.Audio(label='Audio', type='filepath')
dld_midi = gr.components.File(label="Download MIDI")
abc_output = gr.TextArea(label='abc score')
img_score = gr.Image(label='Staff', type='filepath')
gen_btn.click(
inference,
inputs=region_opt,
outputs=[abc_output, dld_midi, img_score, wav_output]
)
demo.launch(share=True)