insecta / insectid /detector.py
admin
upd uname
32d8bc3
raw
history blame
2.21 kB
import os
import khandy
import numpy as np
from .base import OnnxModel
from .base import check_image_dtype_and_shape
class InsectDetector(OnnxModel):
def __init__(self):
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(
current_dir,
"__pycache__/MuGemSt/insecta/quarrying_insect_detector.onnx",
)
self.input_width = 640
self.input_height = 640
super(InsectDetector, self).__init__(model_path)
def _preprocess(self, image):
check_image_dtype_and_shape(image)
# image size normalization
image, scale, pad_left, pad_top = khandy.letterbox_image(
image, self.input_width, self.input_height, 0, return_scale=True
)
# image channel normalization
image = khandy.normalize_image_channel(image, swap_rb=True)
# image dtype normalization
image = khandy.rescale_image(image, "auto", np.float32)
# to tensor
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0)
return image, scale, pad_left, pad_top
def _post_process(
self, outputs_list, scale, pad_left, pad_top, conf_thresh, iou_thresh
):
pred = outputs_list[0][0]
pass_t = pred[:, 4] > conf_thresh
pred = pred[pass_t]
boxes = khandy.convert_boxes_format(pred[:, :4], "cxcywh", "xyxy")
boxes = khandy.unletterbox_2d_points(boxes, scale, pad_left, pad_top, False)
confs = np.max(pred[:, 5:] * pred[:, 4:5], axis=-1)
classes = np.argmax(pred[:, 5:] * pred[:, 4:5], axis=-1)
keep = khandy.non_max_suppression(boxes, confs, iou_thresh)
return boxes[keep], confs[keep], classes[keep]
def detect(self, image, conf_thresh=0.5, iou_thresh=0.5):
image, scale, pad_left, pad_top = self._preprocess(image)
outputs_list = self.forward(image)
boxes, confs, classes = self._post_process(
outputs_list,
scale=scale,
pad_left=pad_left,
pad_top=pad_top,
conf_thresh=conf_thresh,
iou_thresh=iou_thresh,
)
return boxes, confs, classes