hoyoMusic / app.py
admin
sync
503b2cf
raw
history blame
8.87 kB
import re
import os
import time
import torch
import shutil
import argparse
import warnings
import gradio as gr
from transformers import GPT2Config
from model import Patchilizer, TunesFormer
from convert import abc2xml, xml2, xml2img
from utils import (
PATCH_NUM_LAYERS,
PATCH_LENGTH,
CHAR_NUM_LAYERS,
PATCH_SIZE,
SHARE_WEIGHTS,
WEIGHTS_PATH,
TEMP_DIR,
TEYVAT,
DEVICE,
)
def get_args(parser: argparse.ArgumentParser):
parser.add_argument(
"-num_tunes",
type=int,
default=1,
help="the number of independently computed returned tunes",
)
parser.add_argument(
"-max_patch",
type=int,
default=128,
help="integer to define the maximum length in tokens of each tune",
)
parser.add_argument(
"-top_p",
type=float,
default=0.8,
help="float to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-top_k",
type=int,
default=8,
help="integer to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-temperature",
type=float,
default=1.2,
help="the temperature of the sampling operation",
)
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
parser.add_argument(
"-show_control_code",
type=bool,
default=False,
help="whether to show control code",
)
return parser.parse_args()
def generate_music(args, region: str):
patchilizer = Patchilizer()
patch_config = GPT2Config(
num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1,
)
char_config = GPT2Config(
num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128,
)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
checkpoint = torch.load(WEIGHTS_PATH, map_location=torch.device("cpu"))
model.load_state_dict(checkpoint["model"])
model = model.to(DEVICE)
model.eval()
prompt = f"A:{region}\n"
tunes = ""
num_tunes = args.num_tunes
max_patch = args.max_patch
top_p = args.top_p
top_k = args.top_k
temperature = args.temperature
seed = args.seed
show_control_code = args.show_control_code
print(" Hyper parms ".center(60, "#"), "\n")
arg_dict: dict = vars(args)
for key in arg_dict.keys():
print(f"{key}: {str(arg_dict[key])}")
print("\n", " Output tunes ".center(60, "#"))
start_time = time.time()
for i in range(num_tunes):
title_artist = f"T:{region} Fragment\nC:Generated by AI\n"
tune = f"X:{str(i + 1)}\n{title_artist + prompt}"
lines = re.split(r"(\n)", tune)
tune = ""
skip = False
for line in lines:
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
if not skip:
print(line, end="")
tune += line
skip = False
else:
skip = True
input_patches = torch.tensor(
[patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=DEVICE
)
if tune == "":
tokens = None
else:
prefix = patchilizer.decode(input_patches[0])
remaining_tokens = prompt[len(prefix) :]
tokens = torch.tensor(
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
device=DEVICE,
)
while input_patches.shape[1] < max_patch:
predicted_patch, seed = model.generate(
input_patches,
tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
seed=seed,
)
tokens = None
if predicted_patch[0] != patchilizer.eos_token_id:
next_bar = patchilizer.decode([predicted_patch])
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
print(next_bar, end="")
tune += next_bar
if next_bar == "":
break
next_bar = remaining_tokens + next_bar
remaining_tokens = ""
predicted_patch = torch.tensor(
patchilizer.bar2patch(next_bar), device=DEVICE
).unsqueeze(0)
input_patches = torch.cat(
[input_patches, predicted_patch.unsqueeze(0)], dim=1
)
else:
break
tunes += f"{tune}\n\n"
print("\n")
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
try:
xml = abc2xml(tunes, f"{TEMP_DIR}/[{region}]{timestamp}.musicxml")
midi = xml2(xml, "mid")
audio = xml2(xml, "wav")
pdf, jpg = xml2img(xml)
mxl = xml2(xml, "mxl")
return tunes, midi, pdf, xml, mxl, jpg, audio
except Exception as e:
print(f"Invalid abc generated: {e}, retrying...")
return generate_music(args, region)
def infer(region: str):
if os.path.exists(TEMP_DIR):
shutil.rmtree(TEMP_DIR)
os.makedirs(TEMP_DIR, exist_ok=True)
parser = argparse.ArgumentParser()
args = get_args(parser)
return generate_music(args, TEYVAT[region])
if __name__ == "__main__":
warnings.filterwarnings("ignore")
with gr.Blocks() as demo:
gr.Markdown(
"""
<center>欢迎使用此创空间, 此创空间由bilibili <a href="https://space.bilibili.com/30620472">@亦真亦幻Studio</a> 基于 Tunesformer 开源项目制作,完全免费。</center>
<center>Welcome to this space made by bilibili <a href="https://space.bilibili.com/30620472">@MuGeminorum</a> based on the Tunesformer open source project, which is totally free!</center>"""
)
with gr.Row():
with gr.Column():
region_opt = gr.Dropdown(
choices=list(TEYVAT.keys()),
value="蒙德 Mondstadt",
label="地区风格 Region",
)
gen_btn = gr.Button("生成 Generate")
gr.Markdown(
"""
<center>
当前模型还在调试中,计划在原神主线杀青后,所有国家地区角色全部开放后,二创音乐会齐全且样本均衡,届时重新微调模型并添加现实风格筛选辅助游戏各国家输出强化学习,以提升输出区分度与质量。<br>The current model is still in debugging, the plan is in the Genshin Impact after the main line is killed, all countries and regions after all the characters are open, the second creation of the concert will be complete and the sample is balanced, at that time to re-fine-tune the model and add the reality of the style of screening to assist in the game of each country's output to strengthen the learning in order to enhance the output differentiation and quality.
数据来源 (Data source): <a href="https://musescore.org">MuseScore</a><br>
Tag 嵌入数据来源 (Tags source): <a href="https://genshin-impact.fandom.com/wiki/Genshin_Impact_Wiki">Genshin Impact Wiki | Fandom</a><br>
模型基础 (Model base): <a href="https://github.com/sander-wood/tunesformer">Tunesformer</a>
注:崩铁方面数据工程正在运作中,未来也希望随主线杀青而基线化。<br>Note: Data engineering on the Star Rail is in operation, and will hopefully be baselined in the future as well with the mainline kill.</center>"""
)
with gr.Column():
wav_output = gr.Audio(label="音频 (Audio)", type="filepath")
dld_midi = gr.components.File(label="下载 MIDI (Download MIDI)")
pdf_score = gr.components.File(label="下载 PDF 乐谱 (Download PDF)")
dld_xml = gr.components.File(label="下载 MusicXML (Download MusicXML)")
dld_mxl = gr.components.File(label="下载 MXL (Download MXL)")
abc_output = gr.Textbox(label="abc notation", show_copy_button=True)
img_score = gr.Image(label="五线谱 (Staff)", type="filepath")
gen_btn.click(
infer,
inputs=region_opt,
outputs=[
abc_output,
dld_midi,
pdf_score,
dld_xml,
dld_mxl,
img_score,
wav_output,
],
)
demo.launch()