Spaces:
Running
Running
from typing import Any, List, Optional | |
import torch | |
from .age_gender_dataset import AgeGenderDataset | |
class ClassificationDataset(AgeGenderDataset): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.target_dtype = torch.int32 | |
def set_age_classes(self) -> Optional[List[str]]: | |
raise NotImplementedError | |
def parse_target(self, age: str, gender: str) -> List[Any]: | |
assert self.age_classes is not None | |
if age != "-1": | |
assert age in self.age_classes, f"Unknown category in {self.name} dataset: {age}" | |
age_ind = self.age_classes.index(age) | |
else: | |
age_ind = -1 | |
target: List[int] = [age_ind, int(self.parse_gender(gender))] | |
return target | |
class FairFaceDataset(ClassificationDataset): | |
def set_age_classes(self) -> Optional[List[str]]: | |
age_classes = ["0;2", "3;9", "10;19", "20;29", "30;39", "40;49", "50;59", "60;69", "70;120"] | |
# a[i-1] <= v < a[i] => age_classes[i-1] | |
self._intervals = torch.tensor([0, 3, 10, 20, 30, 40, 50, 60, 70]) | |
return age_classes | |
class AdienceDataset(ClassificationDataset): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.target_dtype = torch.int32 | |
def set_age_classes(self) -> Optional[List[str]]: | |
age_classes = ["0;2", "4;6", "8;12", "15;20", "25;32", "38;43", "48;53", "60;100"] | |
# a[i-1] <= v < a[i] => age_classes[i-1] | |
self._intervals = torch.tensor([0, 4, 7, 14, 24, 36, 46, 57]) | |
return age_classes | |