Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,16 +2,21 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
-
import openai
|
| 6 |
import os
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
import io
|
|
|
|
| 11 |
|
| 12 |
-
# Set
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
GROQ_MODEL = "llama3-8b-8192"
|
| 16 |
|
| 17 |
# Load Excel file
|
|
@@ -23,11 +28,7 @@ def load_excel(file):
|
|
| 23 |
|
| 24 |
# Chunk data
|
| 25 |
def chunk_data(df, chunk_size=5):
|
| 26 |
-
|
| 27 |
-
for i in range(0, len(df), chunk_size):
|
| 28 |
-
chunk = df.iloc[i:i+chunk_size].to_string(index=False)
|
| 29 |
-
chunks.append(chunk)
|
| 30 |
-
return chunks
|
| 31 |
|
| 32 |
# Embed chunks
|
| 33 |
@st.cache_resource
|
|
@@ -43,7 +44,7 @@ def query_embedding(user_query, chunks, embeddings, model):
|
|
| 43 |
top_idx = np.argmax(similarities)
|
| 44 |
return chunks[top_idx]
|
| 45 |
|
| 46 |
-
# Generate estimate
|
| 47 |
def generate_estimate(context, user_input):
|
| 48 |
prompt = f"""You are a construction estimator working in Pakistan. Using the following schedule of rates:
|
| 49 |
|
|
@@ -53,13 +54,14 @@ Generate a detailed BOQ estimate including item numbers, full descriptions, unit
|
|
| 53 |
{user_input}
|
| 54 |
|
| 55 |
Present the result in a markdown table with columns: Item No, Description, Qty, Unit, Rate, Amount."""
|
| 56 |
-
|
|
|
|
| 57 |
model=GROQ_MODEL,
|
| 58 |
messages=[{"role": "user", "content": prompt}]
|
| 59 |
)
|
| 60 |
-
return response
|
| 61 |
|
| 62 |
-
#
|
| 63 |
def calculate_quantities(rooms, area, baths, car_porch, living):
|
| 64 |
return {
|
| 65 |
"Total Area (sqft)": area,
|
|
@@ -69,19 +71,16 @@ def calculate_quantities(rooms, area, baths, car_porch, living):
|
|
| 69 |
"Car Porch Area (est.)": car_porch * 200
|
| 70 |
}
|
| 71 |
|
| 72 |
-
#
|
| 73 |
def draw_floor_plan(rooms, baths, living, car_porch, area):
|
| 74 |
total_spaces = rooms + baths + living + car_porch
|
| 75 |
cols = int(np.ceil(np.sqrt(total_spaces)))
|
| 76 |
rows = int(np.ceil(total_spaces / cols))
|
| 77 |
|
| 78 |
fig, ax = plt.subplots(figsize=(10, 8))
|
| 79 |
-
|
| 80 |
-
scale = np.sqrt(area) / 10 # Simple scale factor
|
| 81 |
width, height = scale, scale * 0.75
|
| 82 |
-
|
| 83 |
-
labels = (["Room"] * rooms + ["Bath"] * baths +
|
| 84 |
-
["Living"] * living + ["Car Porch"] * car_porch)
|
| 85 |
|
| 86 |
for i, label in enumerate(labels):
|
| 87 |
row = i // cols
|
|
@@ -102,9 +101,8 @@ def draw_floor_plan(rooms, baths, living, car_porch, area):
|
|
| 102 |
buf.seek(0)
|
| 103 |
return buf
|
| 104 |
|
| 105 |
-
#
|
| 106 |
def main():
|
| 107 |
-
st.set_page_config(page_title="Construction Estimator", layout="centered")
|
| 108 |
st.title("🧱 Construction Estimator (RAG + LLaMA 3 + Sketch)")
|
| 109 |
|
| 110 |
excel_file = st.file_uploader("Upload Schedule of Rates (.xlsx or .xlsm)", type=["xlsx", "xlsm"])
|
|
@@ -131,14 +129,9 @@ def main():
|
|
| 131 |
st.json(quantities)
|
| 132 |
|
| 133 |
st.subheader("💸 Estimated Construction Cost (BOQ Style)")
|
| 134 |
-
st.markdown(
|
| 135 |
-
"""
|
| 136 |
-
**The BOQ generated here is a SIMPLIFIED ESTIMATE. A detailed and accurate BOQ requires professional quantity surveying and design specifications.**
|
| 137 |
-
"""
|
| 138 |
-
)
|
| 139 |
st.markdown(response)
|
| 140 |
|
| 141 |
-
# Generate Sketch
|
| 142 |
buf = draw_floor_plan(rooms, baths, living, car_porch, area)
|
| 143 |
st.subheader("🏠 Tentative Floor Plan Sketch")
|
| 144 |
st.image(buf, caption="Auto-generated Line Plan", use_column_width=True)
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
|
|
|
| 5 |
import os
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import io
|
| 10 |
+
from openai import OpenAI
|
| 11 |
|
| 12 |
+
# Set page config FIRST
|
| 13 |
+
st.set_page_config(page_title="Construction Estimator", layout="centered")
|
| 14 |
+
|
| 15 |
+
# Setup OpenAI/Groq client
|
| 16 |
+
client = OpenAI(
|
| 17 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
| 18 |
+
base_url="https://api.groq.com/openai/v1"
|
| 19 |
+
)
|
| 20 |
GROQ_MODEL = "llama3-8b-8192"
|
| 21 |
|
| 22 |
# Load Excel file
|
|
|
|
| 28 |
|
| 29 |
# Chunk data
|
| 30 |
def chunk_data(df, chunk_size=5):
|
| 31 |
+
return [df.iloc[i:i+chunk_size].to_string(index=False) for i in range(0, len(df), chunk_size)]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Embed chunks
|
| 34 |
@st.cache_resource
|
|
|
|
| 44 |
top_idx = np.argmax(similarities)
|
| 45 |
return chunks[top_idx]
|
| 46 |
|
| 47 |
+
# Generate estimate with Groq
|
| 48 |
def generate_estimate(context, user_input):
|
| 49 |
prompt = f"""You are a construction estimator working in Pakistan. Using the following schedule of rates:
|
| 50 |
|
|
|
|
| 54 |
{user_input}
|
| 55 |
|
| 56 |
Present the result in a markdown table with columns: Item No, Description, Qty, Unit, Rate, Amount."""
|
| 57 |
+
|
| 58 |
+
response = client.chat.completions.create(
|
| 59 |
model=GROQ_MODEL,
|
| 60 |
messages=[{"role": "user", "content": prompt}]
|
| 61 |
)
|
| 62 |
+
return response.choices[0].message.content
|
| 63 |
|
| 64 |
+
# Quantity logic
|
| 65 |
def calculate_quantities(rooms, area, baths, car_porch, living):
|
| 66 |
return {
|
| 67 |
"Total Area (sqft)": area,
|
|
|
|
| 71 |
"Car Porch Area (est.)": car_porch * 200
|
| 72 |
}
|
| 73 |
|
| 74 |
+
# Sketch generator
|
| 75 |
def draw_floor_plan(rooms, baths, living, car_porch, area):
|
| 76 |
total_spaces = rooms + baths + living + car_porch
|
| 77 |
cols = int(np.ceil(np.sqrt(total_spaces)))
|
| 78 |
rows = int(np.ceil(total_spaces / cols))
|
| 79 |
|
| 80 |
fig, ax = plt.subplots(figsize=(10, 8))
|
| 81 |
+
scale = np.sqrt(area) / 10
|
|
|
|
| 82 |
width, height = scale, scale * 0.75
|
| 83 |
+
labels = (["Room"] * rooms + ["Bath"] * baths + ["Living"] * living + ["Car Porch"] * car_porch)
|
|
|
|
|
|
|
| 84 |
|
| 85 |
for i, label in enumerate(labels):
|
| 86 |
row = i // cols
|
|
|
|
| 101 |
buf.seek(0)
|
| 102 |
return buf
|
| 103 |
|
| 104 |
+
# -------------------- MAIN APP --------------------
|
| 105 |
def main():
|
|
|
|
| 106 |
st.title("🧱 Construction Estimator (RAG + LLaMA 3 + Sketch)")
|
| 107 |
|
| 108 |
excel_file = st.file_uploader("Upload Schedule of Rates (.xlsx or .xlsm)", type=["xlsx", "xlsm"])
|
|
|
|
| 129 |
st.json(quantities)
|
| 130 |
|
| 131 |
st.subheader("💸 Estimated Construction Cost (BOQ Style)")
|
| 132 |
+
st.markdown("**This BOQ is a simplified estimate. Use it for planning, not execution.**")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
st.markdown(response)
|
| 134 |
|
|
|
|
| 135 |
buf = draw_floor_plan(rooms, baths, living, car_porch, area)
|
| 136 |
st.subheader("🏠 Tentative Floor Plan Sketch")
|
| 137 |
st.image(buf, caption="Auto-generated Line Plan", use_column_width=True)
|