Spaces:
Runtime error
Runtime error
Msaqibsharif
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,140 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
6 |
+
from diffusers import StableDiffusionPipeline
|
7 |
+
from huggingface_hub import login
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
# Load environment variables from .env file
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Retrieve Hugging Face token from environment variable
|
14 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
15 |
+
|
16 |
+
if HF_TOKEN is None:
|
17 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
18 |
+
|
19 |
+
# Login to Hugging Face using the token
|
20 |
+
login(token=HF_TOKEN)
|
21 |
+
|
22 |
+
# Load DETR model for object detection
|
23 |
+
def load_detr_model():
|
24 |
+
try:
|
25 |
+
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50')
|
26 |
+
processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50')
|
27 |
+
return model, processor, None
|
28 |
+
except Exception as e:
|
29 |
+
return None, None, f"Error loading DETR model: {str(e)}"
|
30 |
+
|
31 |
+
detr_model, detr_processor, detr_error = load_detr_model()
|
32 |
+
|
33 |
+
def detect_objects(image):
|
34 |
+
if image is None:
|
35 |
+
return None, "Invalid image: image is None."
|
36 |
+
|
37 |
+
if detr_model is not None and detr_processor is not None:
|
38 |
+
try:
|
39 |
+
inputs = detr_processor(images=image, return_tensors="pt")
|
40 |
+
outputs = detr_model(**inputs)
|
41 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
42 |
+
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
43 |
+
|
44 |
+
detected_objects = [
|
45 |
+
{"label": detr_model.config.id2label[label.item()],
|
46 |
+
"box": box.tolist()}
|
47 |
+
for label, box in zip(results['labels'], results['boxes'])
|
48 |
+
]
|
49 |
+
return detected_objects, None
|
50 |
+
except Exception as e:
|
51 |
+
return None, f"Error in detect_objects: {str(e)}"
|
52 |
+
else:
|
53 |
+
return None, "DETR models not loaded. Skipping object detection."
|
54 |
+
|
55 |
+
# Load Stable Diffusion model for image generation
|
56 |
+
def load_stable_diffusion_model():
|
57 |
+
try:
|
58 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
+
pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(device)
|
60 |
+
return pipeline, None
|
61 |
+
except Exception as e:
|
62 |
+
return None, f"Error loading Stable Diffusion model: {str(e)}"
|
63 |
+
|
64 |
+
sd_pipeline, sd_error = load_stable_diffusion_model()
|
65 |
+
|
66 |
+
def adjust_dimensions(width, height):
|
67 |
+
# Adjust width and height to be divisible by 8
|
68 |
+
adjusted_width = (width // 8) * 8
|
69 |
+
adjusted_height = (height // 8) * 8
|
70 |
+
return adjusted_width, adjusted_height
|
71 |
+
|
72 |
+
def generate_image(prompt, width, height):
|
73 |
+
if sd_pipeline is not None:
|
74 |
+
try:
|
75 |
+
adjusted_width, adjusted_height = adjust_dimensions(width, height)
|
76 |
+
image = sd_pipeline(prompt, width=adjusted_width, height=adjusted_height).images[0]
|
77 |
+
# Resize back to original dimensions if needed
|
78 |
+
image = image.resize((width, height), Image.LANCZOS)
|
79 |
+
return image, None
|
80 |
+
except Exception as e:
|
81 |
+
return None, f"Error in generate_image: {str(e)}"
|
82 |
+
else:
|
83 |
+
return None, "Stable Diffusion model not loaded. Skipping image generation."
|
84 |
+
|
85 |
+
def process_image(image):
|
86 |
+
if image is None:
|
87 |
+
return None, "Invalid image: image is None."
|
88 |
+
|
89 |
+
try:
|
90 |
+
# Detect objects in the provided image
|
91 |
+
detected_objects, detect_error = detect_objects(image)
|
92 |
+
if detect_error:
|
93 |
+
return None, detect_error
|
94 |
+
|
95 |
+
# Create a prompt based on detected objects
|
96 |
+
prompt = "modern redesign of an interior room with "
|
97 |
+
if detected_objects:
|
98 |
+
prompt += ", ".join([obj['label'] for obj in detected_objects])
|
99 |
+
else:
|
100 |
+
prompt += "empty room"
|
101 |
+
|
102 |
+
# Generate a redesigned image based on the prompt
|
103 |
+
width, height = image.size
|
104 |
+
generated_image, gen_image_error = generate_image(prompt, width, height)
|
105 |
+
if gen_image_error:
|
106 |
+
return None, gen_image_error
|
107 |
+
|
108 |
+
return generated_image, None
|
109 |
+
except Exception as e:
|
110 |
+
return None, f"Error in process_image: {str(e)}"
|
111 |
+
|
112 |
+
# Custom CSS for styling
|
113 |
+
custom_css = """
|
114 |
+
body {
|
115 |
+
background-color: black;
|
116 |
+
}
|
117 |
+
|
118 |
+
h1 {
|
119 |
+
background: linear-gradient(to right, blue, purple);
|
120 |
+
-webkit-background-clip: text;
|
121 |
+
color: transparent;
|
122 |
+
font-size: 3em;
|
123 |
+
text-align: center;
|
124 |
+
margin-bottom: 20px;
|
125 |
+
}
|
126 |
+
"""
|
127 |
+
|
128 |
+
# Creating the Gradio interface with custom styling
|
129 |
+
iface = gr.Interface(
|
130 |
+
fn=process_image,
|
131 |
+
inputs=[gr.Image(type="pil", label="Upload Room Image")],
|
132 |
+
outputs=[gr.Image(type="pil", label="Redesigned Image"), gr.Textbox(label="Error Message")],
|
133 |
+
title="Interior Redesign",
|
134 |
+
css=custom_css
|
135 |
+
)
|
136 |
+
|
137 |
+
try:
|
138 |
+
iface.launch()
|
139 |
+
except Exception as e:
|
140 |
+
print(f"Error occurred while launching the interface: {str(e)}")
|