Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
import gradio as gr | |
def detect_faces(image_file): | |
image_np = cv2.imread(image_file.name) | |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(10, 10)) | |
if len(faces) > 0: | |
print("Face detected!") | |
else: | |
print("No faces detected.") | |
for (x, y, w, h) in faces: | |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2) | |
return image_np | |
interface = gr.Interface( | |
fn=detect_faces, | |
inputs="file", | |
outputs="image", | |
title="Face Detection with Haar Cascade", | |
description="Upload an image file, and the model will detect faces and draw bounding boxes around them.", | |
) | |
interface.launch() |