BanNsfw / app.py
crytion's picture
Update app.py
b05cea6
raw
history blame
1.88 kB
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr
TESTdevice = "cpu"
index = 1
"""
main.py
How to run:
python main.py
"""
def mainTest(inputpath, outpath):
watermark = deep_nude_process(inputpath)
watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
#cv2.imwrite(outpath, watermark1)
return watermark1
#
def deep_nude_process(inputpath):
dress = cv2.imread(inputpath)
h = dress.shape[0]
w = dress.shape[1]
dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
watermark = process(dress)
watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
return watermark
def inference(img):
global index
bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
inputpath = "input_" + str(index) + ".jpg"
cv2.imwrite(inputpath, bgra)
outputpath = "out_" + str(index) + ".jpg"
index += 1
print(time.strftime("开始!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
output = mainTest(inputpath, outputpath)
print(time.strftime("结束!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
return output
title = "AI脱衣"
description = "传入人物照片,类似最下方测试图的那种,将制作脱衣图,一张图可能等30秒,别传私人照片.\n有队列系统,根据先来先做的逻辑,一次只做一张,\n图片必须至少能看出是人体轮廓"
examples = [
['input.png', '测试图'],
['input.jpg', '测试图'],
]
web = gr.Interface(inference,
inputs="image",
outputs="image",
title=title,
description=description,
examples=examples,
)
if __name__ == '__main__':
web.launch(
enable_queue=True
)