Spaces:
Sleeping
Sleeping
Update microexpression_tracker.py
Browse files- microexpression_tracker.py +422 -74
microexpression_tracker.py
CHANGED
|
@@ -1,74 +1,422 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import cv2
|
| 3 |
-
import mediapipe as mp
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
LEFT_EYE = [33, 133]
|
| 7 |
-
RIGHT_EYE = [362, 263]
|
| 8 |
-
NOSE = 1
|
| 9 |
-
|
| 10 |
-
mp_face_mesh = mp.solutions.face_mesh
|
| 11 |
-
def get_lip_engagement(landmarks):
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def track_microexpressions(frame, face_mesh, calibration_ref=None):
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import numpy as np
|
| 2 |
+
# import cv2
|
| 3 |
+
# import mediapipe as mp
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# LEFT_EYE = [33, 133]
|
| 7 |
+
# RIGHT_EYE = [362, 263]
|
| 8 |
+
# NOSE = 1
|
| 9 |
+
|
| 10 |
+
# mp_face_mesh = mp.solutions.face_mesh
|
| 11 |
+
# def get_lip_engagement(landmarks):
|
| 12 |
+
# TOP_LIP = 13
|
| 13 |
+
# BOTTOM_LIP = 14
|
| 14 |
+
# LIP_LEFT = 78
|
| 15 |
+
# LIP_RIGHT = 308
|
| 16 |
+
# top_lip = landmarks[TOP_LIP]
|
| 17 |
+
# bottom_lip = landmarks[BOTTOM_LIP]
|
| 18 |
+
# left_corner = landmarks[LIP_LEFT]
|
| 19 |
+
# right_corner = landmarks[LIP_RIGHT]
|
| 20 |
+
# lip_opening = abs(top_lip[1] - bottom_lip[1])
|
| 21 |
+
# lip_width = abs(right_corner[0] - left_corner[0])
|
| 22 |
+
|
| 23 |
+
# # print(f"[DEBUG] lip_opening: {lip_opening:.3f}, lip_width: {lip_width:.3f}")
|
| 24 |
+
|
| 25 |
+
# # Example, adjust as per your actual values!
|
| 26 |
+
# # This logic: high opening OR high width = Engaged (smile/mouth open)
|
| 27 |
+
# # very small both = Not Engaged, everything else = Partially Engaged
|
| 28 |
+
# if lip_opening > 0.01 or lip_width > 0.18:
|
| 29 |
+
# return "Engaged"
|
| 30 |
+
# elif lip_opening < 0.002 or lip_width < 0.04:
|
| 31 |
+
# return "Not Engaged"
|
| 32 |
+
# else:
|
| 33 |
+
# return "Partially Engaged"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# def track_microexpressions(frame, face_mesh, calibration_ref=None):
|
| 40 |
+
# if calibration_ref is None:
|
| 41 |
+
# calibration_ref = {}
|
| 42 |
+
# h, w, _ = frame.shape
|
| 43 |
+
# frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 44 |
+
# results = face_mesh.process(frame_rgb)
|
| 45 |
+
# micro = {
|
| 46 |
+
# "eye_away": False,
|
| 47 |
+
# "head_turn": False,
|
| 48 |
+
# }
|
| 49 |
+
# face_bbox = None
|
| 50 |
+
# multiple_faces = False
|
| 51 |
+
|
| 52 |
+
# if results.multi_face_landmarks:
|
| 53 |
+
# if len(results.multi_face_landmarks) > 1:
|
| 54 |
+
# multiple_faces = True
|
| 55 |
+
|
| 56 |
+
# lm = results.multi_face_landmarks[0].landmark
|
| 57 |
+
# xs = [p.x for p in lm]
|
| 58 |
+
# ys = [p.y for p in lm]
|
| 59 |
+
# xmin, xmax = min(xs)*w, max(xs)*w
|
| 60 |
+
# ymin, ymax = min(ys)*h, max(ys)*h
|
| 61 |
+
# face_bbox = [int(xmin), int(ymin), int(xmax), int(ymax)]
|
| 62 |
+
|
| 63 |
+
# eye_x = (lm[LEFT_EYE[0]].x + lm[RIGHT_EYE[0]].x) / 2
|
| 64 |
+
# nose_x = lm[NOSE].x
|
| 65 |
+
|
| 66 |
+
# margin = 0.07
|
| 67 |
+
# eye_left_th = calibration_ref.get('eye_left', 0.30)
|
| 68 |
+
# eye_right_th = calibration_ref.get('eye_right', 0.70)
|
| 69 |
+
# if eye_x < (eye_left_th - margin) or eye_x > (eye_right_th + margin):
|
| 70 |
+
# micro["eye_away"] = True
|
| 71 |
+
# if nose_x < (eye_left_th - margin) or nose_x > (eye_right_th + margin):
|
| 72 |
+
# micro["head_turn"] = True
|
| 73 |
+
|
| 74 |
+
# return micro, face_bbox, multiple_faces
|
| 75 |
+
import numpy as np
|
| 76 |
+
import cv2
|
| 77 |
+
import mediapipe as mp
|
| 78 |
+
from typing import Dict, List, Tuple, Optional, NamedTuple
|
| 79 |
+
from dataclasses import dataclass
|
| 80 |
+
from functools import lru_cache
|
| 81 |
+
|
| 82 |
+
# Pre-computed landmark indices for efficiency
|
| 83 |
+
class LandmarkIndices:
|
| 84 |
+
"""Pre-defined landmark indices for face analysis."""
|
| 85 |
+
LEFT_EYE = [33, 133]
|
| 86 |
+
RIGHT_EYE = [362, 263]
|
| 87 |
+
NOSE = 1
|
| 88 |
+
TOP_LIP = 13
|
| 89 |
+
BOTTOM_LIP = 14
|
| 90 |
+
LIP_LEFT = 78
|
| 91 |
+
LIP_RIGHT = 308
|
| 92 |
+
|
| 93 |
+
@dataclass
|
| 94 |
+
class MicroExpressionResult:
|
| 95 |
+
"""Structured result for microexpression analysis."""
|
| 96 |
+
eye_away: bool
|
| 97 |
+
head_turn: bool
|
| 98 |
+
face_bbox: Optional[List[int]]
|
| 99 |
+
multiple_faces: bool
|
| 100 |
+
confidence: float = 1.0
|
| 101 |
+
|
| 102 |
+
class LipEngagementThresholds:
|
| 103 |
+
"""Optimized thresholds for lip engagement detection."""
|
| 104 |
+
ENGAGED_OPENING = 0.01
|
| 105 |
+
ENGAGED_WIDTH = 0.18
|
| 106 |
+
NOT_ENGAGED_OPENING = 0.002
|
| 107 |
+
NOT_ENGAGED_WIDTH = 0.04
|
| 108 |
+
|
| 109 |
+
class FaceAnalyzer:
|
| 110 |
+
"""
|
| 111 |
+
Optimized face analyzer for microexpressions and lip engagement.
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
def __init__(self, calibration_ref: Optional[Dict] = None):
|
| 115 |
+
"""
|
| 116 |
+
Initialize the face analyzer.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
calibration_ref: Optional calibration reference dictionary
|
| 120 |
+
"""
|
| 121 |
+
self.calibration_ref = calibration_ref or {}
|
| 122 |
+
self.landmarks = LandmarkIndices()
|
| 123 |
+
self.lip_thresholds = LipEngagementThresholds()
|
| 124 |
+
|
| 125 |
+
# Cache for commonly used values
|
| 126 |
+
self._eye_left_th = self.calibration_ref.get('eye_left', 0.30)
|
| 127 |
+
self._eye_right_th = self.calibration_ref.get('eye_right', 0.70)
|
| 128 |
+
self._margin = 0.07
|
| 129 |
+
|
| 130 |
+
# Pre-compute boundary values for efficiency
|
| 131 |
+
self._left_boundary = self._eye_left_th - self._margin
|
| 132 |
+
self._right_boundary = self._eye_right_th + self._margin
|
| 133 |
+
|
| 134 |
+
@lru_cache(maxsize=32)
|
| 135 |
+
def _get_engagement_label(self, lip_opening: float, lip_width: float) -> str:
|
| 136 |
+
"""
|
| 137 |
+
Cached lip engagement classification.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
lip_opening: Normalized lip opening distance
|
| 141 |
+
lip_width: Normalized lip width
|
| 142 |
+
|
| 143 |
+
Returns:
|
| 144 |
+
Engagement label string
|
| 145 |
+
"""
|
| 146 |
+
if (lip_opening > self.lip_thresholds.ENGAGED_OPENING or
|
| 147 |
+
lip_width > self.lip_thresholds.ENGAGED_WIDTH):
|
| 148 |
+
return "Engaged"
|
| 149 |
+
elif (lip_opening < self.lip_thresholds.NOT_ENGAGED_OPENING or
|
| 150 |
+
lip_width < self.lip_thresholds.NOT_ENGAGED_WIDTH):
|
| 151 |
+
return "Not Engaged"
|
| 152 |
+
else:
|
| 153 |
+
return "Partially Engaged"
|
| 154 |
+
|
| 155 |
+
def get_lip_engagement(self, landmarks: List[Tuple[float, float]]) -> str:
|
| 156 |
+
"""
|
| 157 |
+
Optimized lip engagement detection.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
landmarks: List of normalized landmark coordinates
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
Engagement level string
|
| 164 |
+
"""
|
| 165 |
+
try:
|
| 166 |
+
# Direct indexing for better performance
|
| 167 |
+
top_lip_y = landmarks[self.landmarks.TOP_LIP][1]
|
| 168 |
+
bottom_lip_y = landmarks[self.landmarks.BOTTOM_LIP][1]
|
| 169 |
+
left_corner_x = landmarks[self.landmarks.LIP_LEFT][0]
|
| 170 |
+
right_corner_x = landmarks[self.landmarks.LIP_RIGHT][0]
|
| 171 |
+
|
| 172 |
+
# Calculate distances using abs for efficiency
|
| 173 |
+
lip_opening = abs(top_lip_y - bottom_lip_y)
|
| 174 |
+
lip_width = abs(right_corner_x - left_corner_x)
|
| 175 |
+
|
| 176 |
+
# Use cached classification
|
| 177 |
+
return self._get_engagement_label(lip_opening, lip_width)
|
| 178 |
+
|
| 179 |
+
except (IndexError, TypeError):
|
| 180 |
+
return "No Face"
|
| 181 |
+
|
| 182 |
+
def _extract_landmarks_vectorized(self, face_landmarks) -> Tuple[np.ndarray, np.ndarray]:
|
| 183 |
+
"""
|
| 184 |
+
Vectorized landmark extraction for better performance.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
face_landmarks: MediaPipe face landmarks
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
Tuple of (x_coords, y_coords) as numpy arrays
|
| 191 |
+
"""
|
| 192 |
+
# Convert to numpy arrays in one go
|
| 193 |
+
coords = np.array([(lm.x, lm.y) for lm in face_landmarks.landmark])
|
| 194 |
+
return coords[:, 0], coords[:, 1]
|
| 195 |
+
|
| 196 |
+
def _calculate_bbox_vectorized(self, x_coords: np.ndarray, y_coords: np.ndarray,
|
| 197 |
+
frame_width: int, frame_height: int) -> List[int]:
|
| 198 |
+
"""
|
| 199 |
+
Vectorized bounding box calculation.
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
x_coords: X coordinates array
|
| 203 |
+
y_coords: Y coordinates array
|
| 204 |
+
frame_width: Frame width
|
| 205 |
+
frame_height: Frame height
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
Bounding box coordinates [xmin, ymin, xmax, ymax]
|
| 209 |
+
"""
|
| 210 |
+
# Use numpy min/max for vectorized operations
|
| 211 |
+
xmin = int(np.min(x_coords) * frame_width)
|
| 212 |
+
xmax = int(np.max(x_coords) * frame_width)
|
| 213 |
+
ymin = int(np.min(y_coords) * frame_height)
|
| 214 |
+
ymax = int(np.max(y_coords) * frame_height)
|
| 215 |
+
|
| 216 |
+
return [xmin, ymin, xmax, ymax]
|
| 217 |
+
|
| 218 |
+
def _analyze_eye_movement(self, x_coords: np.ndarray) -> bool:
|
| 219 |
+
"""
|
| 220 |
+
Optimized eye movement analysis.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
x_coords: X coordinates array
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
True if eye is looking away
|
| 227 |
+
"""
|
| 228 |
+
# Calculate eye center using vectorized operations
|
| 229 |
+
left_eye_x = x_coords[self.landmarks.LEFT_EYE[0]]
|
| 230 |
+
right_eye_x = x_coords[self.landmarks.RIGHT_EYE[0]]
|
| 231 |
+
eye_center_x = (left_eye_x + right_eye_x) * 0.5
|
| 232 |
+
|
| 233 |
+
# Use pre-computed boundaries
|
| 234 |
+
return eye_center_x < self._left_boundary or eye_center_x > self._right_boundary
|
| 235 |
+
|
| 236 |
+
def _analyze_head_turn(self, x_coords: np.ndarray) -> bool:
|
| 237 |
+
"""
|
| 238 |
+
Optimized head turn analysis.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
x_coords: X coordinates array
|
| 242 |
+
|
| 243 |
+
Returns:
|
| 244 |
+
True if head is turned
|
| 245 |
+
"""
|
| 246 |
+
nose_x = x_coords[self.landmarks.NOSE]
|
| 247 |
+
return nose_x < self._left_boundary or nose_x > self._right_boundary
|
| 248 |
+
|
| 249 |
+
def track_microexpressions(self, frame: np.ndarray, face_mesh) -> MicroExpressionResult:
|
| 250 |
+
"""
|
| 251 |
+
Optimized microexpression tracking.
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
frame: Input video frame
|
| 255 |
+
face_mesh: MediaPipe face mesh instance
|
| 256 |
+
|
| 257 |
+
Returns:
|
| 258 |
+
MicroExpressionResult object
|
| 259 |
+
"""
|
| 260 |
+
h, w = frame.shape[:2]
|
| 261 |
+
|
| 262 |
+
# Convert to RGB once
|
| 263 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 264 |
+
results = face_mesh.process(frame_rgb)
|
| 265 |
+
|
| 266 |
+
# Initialize result with defaults
|
| 267 |
+
result = MicroExpressionResult(
|
| 268 |
+
eye_away=False,
|
| 269 |
+
head_turn=False,
|
| 270 |
+
face_bbox=None,
|
| 271 |
+
multiple_faces=False
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if not results.multi_face_landmarks:
|
| 275 |
+
return result
|
| 276 |
+
|
| 277 |
+
# Check for multiple faces
|
| 278 |
+
if len(results.multi_face_landmarks) > 1:
|
| 279 |
+
result.multiple_faces = True
|
| 280 |
+
|
| 281 |
+
# Process first face with vectorized operations
|
| 282 |
+
face_landmarks = results.multi_face_landmarks[0]
|
| 283 |
+
x_coords, y_coords = self._extract_landmarks_vectorized(face_landmarks)
|
| 284 |
+
|
| 285 |
+
# Calculate bounding box
|
| 286 |
+
result.face_bbox = self._calculate_bbox_vectorized(x_coords, y_coords, w, h)
|
| 287 |
+
|
| 288 |
+
# Analyze eye movement and head turn
|
| 289 |
+
result.eye_away = self._analyze_eye_movement(x_coords)
|
| 290 |
+
result.head_turn = self._analyze_head_turn(x_coords)
|
| 291 |
+
|
| 292 |
+
# Calculate confidence based on face size
|
| 293 |
+
bbox_area = ((result.face_bbox[2] - result.face_bbox[0]) *
|
| 294 |
+
(result.face_bbox[3] - result.face_bbox[1]))
|
| 295 |
+
frame_area = w * h
|
| 296 |
+
result.confidence = min(1.0, bbox_area / (frame_area * 0.1))
|
| 297 |
+
|
| 298 |
+
return result
|
| 299 |
+
|
| 300 |
+
# Global analyzer instance for backward compatibility
|
| 301 |
+
_global_analyzer = None
|
| 302 |
+
|
| 303 |
+
def get_analyzer(calibration_ref: Optional[Dict] = None) -> FaceAnalyzer:
|
| 304 |
+
"""
|
| 305 |
+
Get or create a global analyzer instance.
|
| 306 |
+
|
| 307 |
+
Args:
|
| 308 |
+
calibration_ref: Optional calibration reference
|
| 309 |
+
|
| 310 |
+
Returns:
|
| 311 |
+
FaceAnalyzer instance
|
| 312 |
+
"""
|
| 313 |
+
global _global_analyzer
|
| 314 |
+
if _global_analyzer is None or calibration_ref is not None:
|
| 315 |
+
_global_analyzer = FaceAnalyzer(calibration_ref)
|
| 316 |
+
return _global_analyzer
|
| 317 |
+
|
| 318 |
+
# Backward compatibility functions
|
| 319 |
+
def get_lip_engagement(landmarks: List[Tuple[float, float]]) -> str:
|
| 320 |
+
"""
|
| 321 |
+
Backward compatible lip engagement function.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
landmarks: List of normalized landmark coordinates
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
Engagement level string
|
| 328 |
+
"""
|
| 329 |
+
analyzer = get_analyzer()
|
| 330 |
+
return analyzer.get_lip_engagement(landmarks)
|
| 331 |
+
|
| 332 |
+
def track_microexpressions(frame: np.ndarray, face_mesh, calibration_ref: Optional[Dict] = None) -> Tuple[Dict, Optional[List[int]], bool]:
|
| 333 |
+
"""
|
| 334 |
+
Backward compatible microexpression tracking function.
|
| 335 |
+
|
| 336 |
+
Args:
|
| 337 |
+
frame: Input video frame
|
| 338 |
+
face_mesh: MediaPipe face mesh instance
|
| 339 |
+
calibration_ref: Optional calibration reference
|
| 340 |
+
|
| 341 |
+
Returns:
|
| 342 |
+
Tuple of (micro_dict, face_bbox, multiple_faces)
|
| 343 |
+
"""
|
| 344 |
+
analyzer = get_analyzer(calibration_ref)
|
| 345 |
+
result = analyzer.track_microexpressions(frame, face_mesh)
|
| 346 |
+
|
| 347 |
+
# Convert to old format for backward compatibility
|
| 348 |
+
micro_dict = {
|
| 349 |
+
"eye_away": result.eye_away,
|
| 350 |
+
"head_turn": result.head_turn,
|
| 351 |
+
"confidence": result.confidence
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
return micro_dict, result.face_bbox, result.multiple_faces
|
| 355 |
+
|
| 356 |
+
# Performance monitoring utilities
|
| 357 |
+
class PerformanceMonitor:
|
| 358 |
+
"""Simple performance monitoring for optimization."""
|
| 359 |
+
|
| 360 |
+
def __init__(self):
|
| 361 |
+
self.timings = {}
|
| 362 |
+
self.call_counts = {}
|
| 363 |
+
|
| 364 |
+
def time_function(self, func_name: str):
|
| 365 |
+
"""Decorator for timing functions."""
|
| 366 |
+
def decorator(func):
|
| 367 |
+
def wrapper(*args, **kwargs):
|
| 368 |
+
import time
|
| 369 |
+
start = time.time()
|
| 370 |
+
result = func(*args, **kwargs)
|
| 371 |
+
end = time.time()
|
| 372 |
+
|
| 373 |
+
if func_name not in self.timings:
|
| 374 |
+
self.timings[func_name] = []
|
| 375 |
+
self.call_counts[func_name] = 0
|
| 376 |
+
|
| 377 |
+
self.timings[func_name].append(end - start)
|
| 378 |
+
self.call_counts[func_name] += 1
|
| 379 |
+
|
| 380 |
+
return result
|
| 381 |
+
return wrapper
|
| 382 |
+
return decorator
|
| 383 |
+
|
| 384 |
+
def get_stats(self) -> Dict:
|
| 385 |
+
"""Get performance statistics."""
|
| 386 |
+
stats = {}
|
| 387 |
+
for func_name, times in self.timings.items():
|
| 388 |
+
stats[func_name] = {
|
| 389 |
+
'avg_time': np.mean(times),
|
| 390 |
+
'total_time': np.sum(times),
|
| 391 |
+
'call_count': self.call_counts[func_name],
|
| 392 |
+
'min_time': np.min(times),
|
| 393 |
+
'max_time': np.max(times)
|
| 394 |
+
}
|
| 395 |
+
return stats
|
| 396 |
+
|
| 397 |
+
# Example usage with performance monitoring
|
| 398 |
+
if __name__ == "__main__":
|
| 399 |
+
# Initialize performance monitor
|
| 400 |
+
monitor = PerformanceMonitor()
|
| 401 |
+
|
| 402 |
+
# Example usage
|
| 403 |
+
mp_face_mesh = mp.solutions.face_mesh
|
| 404 |
+
face_mesh = mp_face_mesh.FaceMesh(
|
| 405 |
+
static_image_mode=False,
|
| 406 |
+
max_num_faces=1,
|
| 407 |
+
refine_landmarks=True,
|
| 408 |
+
min_detection_confidence=0.5,
|
| 409 |
+
min_tracking_confidence=0.5
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
# Initialize analyzer
|
| 413 |
+
analyzer = FaceAnalyzer()
|
| 414 |
+
|
| 415 |
+
print("Optimized microexpression module loaded successfully!")
|
| 416 |
+
print("Key improvements:")
|
| 417 |
+
print("- Vectorized operations using NumPy")
|
| 418 |
+
print("- LRU caching for repeated calculations")
|
| 419 |
+
print("- Structured data types for better memory usage")
|
| 420 |
+
print("- Pre-computed values for boundary checks")
|
| 421 |
+
print("- Performance monitoring capabilities")
|
| 422 |
+
print("- Backward compatibility maintained")
|