|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from typing import List, Optional, Tuple, Dict |
|
from collections import deque |
|
|
|
import torch |
|
import numpy as np |
|
|
|
from tokenizers import pre_tokenizers, processors |
|
|
|
from transformers.tokenization_utils_base import AddedToken, BatchEncoding |
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
from transformers.utils import logging |
|
from transformers.models.bart.tokenization_bart import BartTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} |
|
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", |
|
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", |
|
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", |
|
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", |
|
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", |
|
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", |
|
}, |
|
"merges_file": { |
|
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", |
|
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", |
|
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", |
|
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", |
|
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", |
|
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", |
|
}, |
|
"tokenizer_file": { |
|
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", |
|
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", |
|
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", |
|
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", |
|
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", |
|
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", |
|
}, |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"facebook/bart-base": 1024, |
|
"facebook/bart-large": 1024, |
|
"facebook/bart-large-mnli": 1024, |
|
"facebook/bart-large-cnn": 1024, |
|
"facebook/bart-large-xsum": 1024, |
|
"yjernite/bart_eli5": 1024, |
|
} |
|
|
|
|
|
class BartCustomTokenizerFast(PreTrainedTokenizerFast): |
|
r""" |
|
Construct a "fast" BART tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer, |
|
using byte-level Byte-Pair-Encoding. |
|
|
|
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will |
|
be encoded differently whether it is at the beginning of the sentence (without space) or not: |
|
|
|
``` |
|
>>> from transformers import BartTokenizerFast |
|
>>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base") |
|
>>> tokenizer("Hello world")['input_ids'] |
|
[0, 31414, 232, 2] |
|
>>> tokenizer(" Hello world")['input_ids'] |
|
[0, 20920, 232, 2] |
|
``` |
|
|
|
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you |
|
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. |
|
|
|
<Tip> |
|
|
|
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. |
|
|
|
</Tip> |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
merges_file (`str`): |
|
Path to the merges file. |
|
errors (`str`, *optional*, defaults to `"replace"`): |
|
Paradigm to follow when decoding bytes to UTF-8. See |
|
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. |
|
bos_token (`str`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the beginning of |
|
sequence. The token used is the `cls_token`. |
|
|
|
</Tip> |
|
|
|
eos_token (`str`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
|
|
<Tip> |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence. |
|
The token used is the `sep_token`. |
|
|
|
</Tip> |
|
|
|
sep_token (`str`, *optional*, defaults to `"</s>"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
cls_token (`str`, *optional*, defaults to `"<s>"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
unk_token (`str`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"<pad>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
mask_token (`str`, *optional*, defaults to `"<mask>"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
add_prefix_space (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. (BART tokenizer detect beginning of words by the preceding space). |
|
trim_offsets (`bool`, *optional*, defaults to `True`): |
|
Whether the post processing step should trim offsets to avoid including whitespaces. |
|
""" |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask", "input_commonsense_relations", "commonsense_mask"] |
|
slow_tokenizer_class = BartTokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
errors="replace", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
sep_token="</s>", |
|
cls_token="<s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
mask_token="<mask>", |
|
add_prefix_space=False, |
|
trim_offsets=True, |
|
**kwargs |
|
): |
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
errors=errors, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
add_prefix_space=add_prefix_space, |
|
trim_offsets=trim_offsets, |
|
**kwargs, |
|
) |
|
|
|
self.relational_kind_to_index = None |
|
self.there_is_difference_between_relations = True |
|
|
|
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) |
|
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: |
|
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) |
|
pre_tok_state["add_prefix_space"] = add_prefix_space |
|
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) |
|
|
|
self.add_prefix_space = add_prefix_space |
|
|
|
|
|
tokenizer_component = "post_processor" |
|
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) |
|
if tokenizer_component_instance: |
|
state = json.loads(tokenizer_component_instance.__getstate__()) |
|
|
|
|
|
if "sep" in state: |
|
state["sep"] = tuple(state["sep"]) |
|
if "cls" in state: |
|
state["cls"] = tuple(state["cls"]) |
|
|
|
changes_to_apply = False |
|
|
|
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: |
|
state["add_prefix_space"] = add_prefix_space |
|
changes_to_apply = True |
|
|
|
if state.get("trim_offsets", trim_offsets) != trim_offsets: |
|
state["trim_offsets"] = trim_offsets |
|
changes_to_apply = True |
|
|
|
if changes_to_apply: |
|
component_class = getattr(processors, state.pop("type")) |
|
new_value = component_class(**state) |
|
setattr(self.backend_tokenizer, tokenizer_component, new_value) |
|
|
|
def __call__(self, *args, **kwargs): |
|
input_commonsense_relations = kwargs.get('input_commonsense_relations', None) |
|
if 'input_commonsense_relations' in kwargs: |
|
kwargs.pop('input_commonsense_relations') |
|
out = super(BartCustomTokenizerFast, self).__call__(*args, **kwargs) |
|
if out.get('input_commonsense_relations') is None: |
|
out = self._post_process_tokenization(input_commonsense_relations, out) |
|
return out |
|
|
|
def set_known_relation_names(self, known_relations_names: List[str]): |
|
self.relational_kind_to_index = {t: i + 1 for i, t in enumerate(known_relations_names)} |
|
|
|
def set_operation_mode(self, there_is_difference_between_relations=True): |
|
self.there_is_difference_between_relations = there_is_difference_between_relations |
|
|
|
@property |
|
def mask_token(self) -> str: |
|
""" |
|
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not |
|
having been set. |
|
|
|
BART tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily |
|
comprise the space before the *<mask>*. |
|
""" |
|
if self._mask_token is None and self.verbose: |
|
logger.error("Using mask_token, but it is not set yet.") |
|
return None |
|
return str(self._mask_token) |
|
|
|
@mask_token.setter |
|
def mask_token(self, value): |
|
""" |
|
Overriding the default behavior of the mask token to have it eat the space before it. |
|
|
|
This is needed to preserve backward compatibility with all the previously used models based on Bart. |
|
""" |
|
|
|
|
|
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value |
|
self._mask_token = value |
|
|
|
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
if is_split_into_words and not self.add_prefix_space: |
|
raise ValueError( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
input_commonsense_relations = kwargs.get('input_commonsense_relations', None) |
|
if 'input_commonsense_relations' in kwargs: |
|
kwargs.pop('input_commonsense_relations') |
|
out = super()._batch_encode_plus(*args, **kwargs) |
|
if out.get('input_commonsense_relations') is None: |
|
out = self._post_process_tokenization(input_commonsense_relations, out) |
|
return out |
|
|
|
def _encode_plus(self, *args, **kwargs) -> BatchEncoding: |
|
is_split_into_words = kwargs.get("is_split_into_words", False) |
|
|
|
if is_split_into_words and not self.add_prefix_space: |
|
raise ValueError( |
|
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " |
|
"to use it with pretokenized inputs." |
|
) |
|
|
|
input_commonsense_relations = kwargs.get('input_commonsense_relations', None) |
|
if 'input_commonsense_relations' in kwargs: |
|
kwargs.pop('input_commonsense_relations') |
|
out = super()._encode_plus(*args, **kwargs) |
|
if out.get('input_commonsense_relations') is None: |
|
out = self._post_process_tokenization(input_commonsense_relations, out) |
|
return out |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] |
|
if token_ids_1 is None: |
|
return output |
|
|
|
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not |
|
make use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of zeros. |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] |
|
|
|
def _post_process_tokenization(self, input_commonsense_relations, out: BatchEncoding) -> BatchEncoding: |
|
new_input_relations = self.get_new_input_relation_kinds( |
|
tokenizer_outputs=out, input_relations=input_commonsense_relations |
|
) |
|
|
|
|
|
out['input_commonsense_relations'] = new_input_relations |
|
return out |
|
|
|
def find_new_tokens_span_for_multiword(self, pair, aux_dict): |
|
old_start, old_end = pair |
|
|
|
keys = list(aux_dict.keys()) |
|
|
|
new_start, new_end = old_start, old_end |
|
for (start, end) in keys: |
|
|
|
|
|
|
|
if old_start >= start and old_end <= end: |
|
new_start, new_end = start, end |
|
break |
|
return new_start, new_end |
|
|
|
def find_new_tokens_incoming_span_for_multiword(self, pair, aux_dict): |
|
old_start, old_end = pair |
|
incoming_rels = list([coord for v in aux_dict.values() for coord, relation in v.items()]) |
|
new_start, new_end = old_start, old_end |
|
for (start, end) in incoming_rels: |
|
|
|
|
|
|
|
if old_start >= start and old_end <= end: |
|
new_start, new_end = start, end |
|
break |
|
return new_start, new_end |
|
|
|
def get_new_input_relation_kinds( |
|
self, |
|
tokenizer_outputs: BatchEncoding, |
|
input_relations: Optional[List[Dict[Tuple[int, int], Dict[Tuple[int, int], str]]]] = None |
|
) -> torch.Tensor: |
|
|
|
n_examples = len(tokenizer_outputs['input_ids']) |
|
n_tokens = len(tokenizer_outputs['input_ids'][0]) |
|
aux_input_relation_kinds = np.zeros( |
|
(n_examples, n_tokens, n_tokens), |
|
dtype=np.int64 |
|
) |
|
if not input_relations and input_relations is not None: |
|
return torch.from_numpy(aux_input_relation_kinds) |
|
elif not input_relations: |
|
return None |
|
assert 'offset_mapping' in tokenizer_outputs, "Run tokenizer with return_offsets_mapping=True" |
|
|
|
|
|
if input_relations is not None: |
|
|
|
if isinstance(input_relations, dict): |
|
input_relations = [input_relations] |
|
mappings = tokenizer_outputs['offset_mapping'] |
|
assert len(mappings) == len(input_relations) |
|
|
|
|
|
|
|
mappings = [[tuple(x) for x in mappings[idx].cpu().detach().tolist()] for idx in range(n_examples)] |
|
|
|
examples_mappings = [] |
|
max_idx = 0 |
|
for idx, mapping in enumerate(mappings): |
|
|
|
words = tokenizer_outputs.word_ids(batch_index=idx) |
|
tokens_to_words = deque(words) |
|
token_idx_2_word_span = {} |
|
for token_idx, (_char_i, _char_j) in enumerate(mapping): |
|
word_idx_of_token = tokens_to_words.popleft() |
|
if word_idx_of_token is None: |
|
continue |
|
token_span = tokenizer_outputs.word_to_chars(word_idx_of_token) |
|
token_idx_2_word_span[token_idx] = (token_span.start, token_span.end) |
|
max_idx = max(token_idx, max_idx) |
|
|
|
|
|
token_idx_2_word_span_multiword = {} |
|
d = input_relations[idx] |
|
for k, v in token_idx_2_word_span.items(): |
|
|
|
new_start, new_end = self.find_new_tokens_span_for_multiword(v, d) |
|
token_idx_2_word_span_multiword[k] = (new_start, new_end) |
|
|
|
|
|
if v[0]==new_start and v[1]==new_end: |
|
new_start, new_end = self.find_new_tokens_incoming_span_for_multiword(v, d) |
|
token_idx_2_word_span_multiword[k] = (new_start, new_end) |
|
|
|
|
|
|
|
|
|
examples_mappings.append(token_idx_2_word_span_multiword) |
|
|
|
|
|
for i_example in range(n_examples): |
|
token_idx_2_word_span = examples_mappings[i_example] |
|
|
|
possible_relations = input_relations[i_example] |
|
|
|
for token_i_idx in range(max_idx + 1): |
|
for token_j_idx in range(max_idx + 1): |
|
fixed_word_range = token_idx_2_word_span.get(token_i_idx, None) |
|
other_word_range = token_idx_2_word_span.get(token_j_idx, None) |
|
if not fixed_word_range or not other_word_range: |
|
continue |
|
|
|
relations = possible_relations.get(fixed_word_range, None) |
|
if not relations: |
|
continue |
|
|
|
relation_kind = relations.get(other_word_range, None) |
|
if not relation_kind: |
|
continue |
|
|
|
if self.there_is_difference_between_relations: |
|
aux_input_relation_kinds[i_example, token_i_idx, token_j_idx] = self.relational_kind_to_index[relation_kind] |
|
else: |
|
|
|
aux_input_relation_kinds[i_example, token_i_idx, token_j_idx] = 1 |
|
aux_input_relation_kinds = torch.from_numpy(aux_input_relation_kinds) |
|
return aux_input_relation_kinds |
|
|
|
def create_commonsense_mask(self, tokenizer_outputs, commonsense_matrix, num_heads=16, specific_head=0): |
|
bsz = len(tokenizer_outputs['input_ids']) |
|
n_tokens = len(tokenizer_outputs['input_ids'][0]) |
|
commonsense_mask = np.zeros( |
|
((bsz, num_heads, n_tokens, n_tokens)), |
|
dtype=np.int64 |
|
) |
|
if commonsense_matrix is None: |
|
commonsense_matrix = np.zeros( |
|
((bsz, n_tokens, n_tokens)), |
|
dtype=np.int64 |
|
) |
|
commonsense_mask = commonsense_mask.reshape((num_heads, bsz, n_tokens, n_tokens)) |
|
|
|
|
|
commonsense_mask[specific_head] = commonsense_matrix |
|
commonsense_mask = commonsense_mask.reshape((bsz, num_heads, n_tokens, n_tokens)) |
|
return commonsense_mask |
|
|