|
|
|
|
|
|
|
|
|
|
|
from typing import ( |
|
Optional, |
|
Tuple, |
|
Union, |
|
List, |
|
) |
|
|
|
|
|
import torch |
|
from torch import nn |
|
from transformers import ( |
|
BartConfig, |
|
BartPretrainedModel, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, Seq2SeqModelOutput, |
|
) |
|
from transformers.models.bart.modeling_bart import shift_tokens_right |
|
|
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_end_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
|
|
from .config import BartCustomConfig |
|
from .encoder import BartCustomEncoder |
|
from .decoder import BartCustomDecoder |
|
from .custom_constants import BartConstants |
|
from .custom_outputs import CustomSeq2SeqModelOutput |
|
|
|
@add_start_docstrings( |
|
"The bare BART Model outputting raw hidden-states without any specific head on top.", |
|
BartConstants.BART_START_DOCSTRING, |
|
) |
|
class BartCustomModel(BartPretrainedModel): |
|
def __init__(self, config: BartCustomConfig): |
|
super().__init__(config) |
|
|
|
padding_idx, vocab_size = config.pad_token_id, config.vocab_size |
|
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) |
|
|
|
self.encoder = BartCustomEncoder(config, self.shared) |
|
self.decoder = BartCustomDecoder(config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, value): |
|
self.shared = value |
|
self.encoder.embed_tokens = self.shared |
|
self.decoder.embed_tokens = self.shared |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
@add_start_docstrings_to_model_forward(BartConstants.BART_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
processor_class= BartConstants.TOKENIZER_FOR_DOC, |
|
checkpoint= BartConstants.CHECKPOINT_FOR_DOC, |
|
output_type= Seq2SeqModelOutput, |
|
config_class= BartConstants.CONFIG_FOR_DOC, |
|
expected_output= BartConstants.EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
decoder_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[List[torch.FloatTensor]] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
relation_inputs: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple, CustomSeq2SeqModelOutput]: |
|
|
|
|
|
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
if input_ids is None: |
|
raise ValueError( |
|
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " |
|
"passed, `input_ids` cannot be `None`. Please pass either " |
|
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." |
|
) |
|
|
|
decoder_input_ids = shift_tokens_right( |
|
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id |
|
) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
relation_inputs=relation_inputs |
|
) |
|
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_hidden_states=encoder_outputs[0], |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return CustomSeq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
encoder_head_mask=head_mask |
|
) |
|
|