APIFo / modules /sample_hijack.py
MrNikolaTesla's picture
Upload folder using huggingface_hub
113c29e verified
import torch
import ldm_patched.modules.samplers
import ldm_patched.modules.model_management
from collections import namedtuple
from ldm_patched.contrib.external_custom_sampler import SDTurboScheduler
from ldm_patched.k_diffusion import sampling as k_diffusion_sampling
from ldm_patched.modules.samplers import normal_scheduler, simple_scheduler, ddim_scheduler
from ldm_patched.modules.model_base import SDXLRefiner, SDXL
from ldm_patched.modules.conds import CONDRegular
from ldm_patched.modules.sample import get_additional_models, get_models_from_cond, cleanup_additional_models
from ldm_patched.modules.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \
create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_model_conds
current_refiner = None
refiner_switch_step = -1
@torch.no_grad()
@torch.inference_mode()
def clip_separate_inner(c, p, target_model=None, target_clip=None):
if target_model is None or isinstance(target_model, SDXLRefiner):
c = c[..., -1280:].clone()
elif isinstance(target_model, SDXL):
c = c.clone()
else:
p = None
c = c[..., :768].clone()
final_layer_norm = target_clip.cond_stage_model.clip_l.transformer.text_model.final_layer_norm
final_layer_norm_origin_device = final_layer_norm.weight.device
final_layer_norm_origin_dtype = final_layer_norm.weight.dtype
c_origin_device = c.device
c_origin_dtype = c.dtype
final_layer_norm.to(device='cpu', dtype=torch.float32)
c = c.to(device='cpu', dtype=torch.float32)
c = torch.chunk(c, int(c.size(1)) // 77, 1)
c = [final_layer_norm(ci) for ci in c]
c = torch.cat(c, dim=1)
final_layer_norm.to(device=final_layer_norm_origin_device, dtype=final_layer_norm_origin_dtype)
c = c.to(device=c_origin_device, dtype=c_origin_dtype)
return c, p
@torch.no_grad()
@torch.inference_mode()
def clip_separate(cond, target_model=None, target_clip=None):
results = []
for c, px in cond:
p = px.get('pooled_output', None)
c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip)
p = {} if p is None else {'pooled_output': p.clone()}
results.append([c, p])
return results
@torch.no_grad()
@torch.inference_mode()
def clip_separate_after_preparation(cond, target_model=None, target_clip=None):
results = []
for x in cond:
p = x.get('pooled_output', None)
c = x['model_conds']['c_crossattn'].cond
c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip)
result = {'model_conds': {'c_crossattn': CONDRegular(c)}}
if p is not None:
result['pooled_output'] = p.clone()
results.append(result)
return results
@torch.no_grad()
@torch.inference_mode()
def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
global current_refiner
positive = positive[:]
negative = negative[:]
resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)
model_wrap = wrap_model(model)
calculate_start_end_timesteps(model, negative)
calculate_start_end_timesteps(model, positive)
if latent_image is not None:
latent_image = model.process_latent_in(latent_image)
if hasattr(model, 'extra_conds'):
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
for c in negative:
create_cond_with_same_area_if_none(positive, c)
# pre_run_control(model, negative + positive)
pre_run_control(model, positive) # negative is not necessary in Fooocus, 0.5s faster.
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
if current_refiner is not None and hasattr(current_refiner.model, 'extra_conds'):
positive_refiner = clip_separate_after_preparation(positive, target_model=current_refiner.model)
negative_refiner = clip_separate_after_preparation(negative, target_model=current_refiner.model)
positive_refiner = encode_model_conds(current_refiner.model.extra_conds, positive_refiner, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
negative_refiner = encode_model_conds(current_refiner.model.extra_conds, negative_refiner, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
def refiner_switch():
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))
extra_args["cond"] = positive_refiner
extra_args["uncond"] = negative_refiner
# clear ip-adapter for refiner
extra_args['model_options'] = {k: {} if k == 'transformer_options' else v for k, v in extra_args['model_options'].items()}
models, inference_memory = get_additional_models(positive_refiner, negative_refiner, current_refiner.model_dtype())
ldm_patched.modules.model_management.load_models_gpu(
[current_refiner] + models,
model.memory_required([noise.shape[0] * 2] + list(noise.shape[1:])) + inference_memory)
model_wrap.inner_model = current_refiner.model
print('Refiner Swapped')
return
def callback_wrap(step, x0, x, total_steps):
if step == refiner_switch_step and current_refiner is not None:
refiner_switch()
if callback is not None:
# residual_noise_preview = x - x0
# residual_noise_preview /= residual_noise_preview.std()
# residual_noise_preview *= x0.std()
callback(step, x0, x, total_steps)
samples = sampler.sample(model_wrap, sigmas, extra_args, callback_wrap, noise, latent_image, denoise_mask, disable_pbar)
return model.process_latent_out(samples.to(torch.float32))
@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas_scheduler_hacked(model, scheduler_name, steps):
if scheduler_name == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
elif scheduler_name == "exponential":
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
elif scheduler_name == "normal":
sigmas = normal_scheduler(model, steps)
elif scheduler_name == "simple":
sigmas = simple_scheduler(model, steps)
elif scheduler_name == "ddim_uniform":
sigmas = ddim_scheduler(model, steps)
elif scheduler_name == "sgm_uniform":
sigmas = normal_scheduler(model, steps, sgm=True)
elif scheduler_name == "turbo":
sigmas = SDTurboScheduler().get_sigmas(namedtuple('Patcher', ['model'])(model=model), steps=steps, denoise=1.0)[0]
else:
raise TypeError("error invalid scheduler")
return sigmas
ldm_patched.modules.samplers.calculate_sigmas_scheduler = calculate_sigmas_scheduler_hacked
ldm_patched.modules.samplers.sample = sample_hacked