Spaces:
Sleeping
Sleeping
Mr-Vicky-01
commited on
Commit
•
6364e8b
1
Parent(s):
1a117af
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
from langchain.llms import GooglePalm
|
4 |
+
from langchain import LLMChain, PromptTemplate
|
5 |
+
from gtts import gTTS
|
6 |
+
from IPython.display import Audio
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Load image captioning model
|
12 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
+
|
15 |
+
def generate_caption_from_image(image_path):
|
16 |
+
# Process the image and generate caption
|
17 |
+
raw_image = Image.open(image_path).convert("RGB")
|
18 |
+
inputs = processor(raw_image, return_tensors="pt")
|
19 |
+
out = model.generate(**inputs)
|
20 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
21 |
+
return caption
|
22 |
+
|
23 |
+
def generate_story_from_caption(caption):
|
24 |
+
# Generate story based on caption
|
25 |
+
api_key = os.getenv("GOOGLE_API")
|
26 |
+
prompt_template = """You are a story teller;
|
27 |
+
You can generate a short story based on a simple narrative, the story should between 30 to 50 words;
|
28 |
+
CONTEXT: {scenario}
|
29 |
+
Story: """
|
30 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["scenario"])
|
31 |
+
llm_chain = LLMChain(prompt=PROMPT,
|
32 |
+
llm=GooglePalm(google_api_key=api_key, temperature=0.8))
|
33 |
+
scenario = caption
|
34 |
+
story = llm_chain.run(scenario)
|
35 |
+
return story
|
36 |
+
|
37 |
+
def text_to_speech(text):
|
38 |
+
# Convert text to speech
|
39 |
+
tts = gTTS(text=text, lang='en')
|
40 |
+
tts.save("output.mp3")
|
41 |
+
return "output.mp3"
|
42 |
+
|
43 |
+
def generate_story_from_image(image_input):
|
44 |
+
input_image = Image.fromarray(image_input)
|
45 |
+
input_image.save("input_image.jpg")
|
46 |
+
image_path = 'input_image.jpg'
|
47 |
+
caption = generate_caption_from_image(image_path)
|
48 |
+
story = generate_story_from_caption(caption)
|
49 |
+
audio = text_to_speech(story)
|
50 |
+
return audio
|
51 |
+
|
52 |
+
|
53 |
+
# Define the input and output components
|
54 |
+
inputs = gr.Image(label="Image")
|
55 |
+
outputs = gr.Audio(label="Story Audio")
|
56 |
+
|
57 |
+
# Create the Gradio interface
|
58 |
+
gr.Interface(fn=generate_story_from_image, inputs=inputs, outputs=outputs, title="Story Teller").launch(debug=True,share=True)
|