Spaces:
Running
Running
import streamlit as st | |
import os | |
from streamlit_chat import message | |
from PyPDF2 import PdfReader | |
import google.generativeai as genai | |
from langchain.prompts import PromptTemplate | |
from langchain import LLMChain | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_community.tools import DuckDuckGoSearchRun | |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY") | |
genai.configure(api_key=os.environ["GOOGLE_API_KEY"]) | |
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", | |
temperature=0.2) | |
search_engine = DuckDuckGoSearchRun() | |
def get_web_result(question): | |
result = search_engine.invoke(question) | |
return result.strip() | |
template = """You are a friendly chat assistant called "CRETA" having a conversation with a human and you are created by Pachaiappan [portfolio](https://mr-vicky-01.github.io/Portfolio/) an AI Specialist. If the question pertains to information that you do not have access to, respond with string 'search_query' only nothing else. | |
provided document: | |
{provided_docs} | |
previous_chat: | |
{chat_history} | |
Human: {human_input} | |
Chatbot:""" | |
prompt = PromptTemplate( | |
input_variables=["chat_history", "human_input", "provided_docs"], template=template | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
# verbose=True, | |
) | |
template_2 = """read the web_result and Answer the fallowing question carefully, your response must be short and informative | |
web_result: | |
{web_result} | |
previous_chat: | |
{chat_history} | |
Question: {human_input} | |
Chatbot:""" | |
prompt2 = PromptTemplate( | |
input_variables=["web_result", "chat_history", "human_input", "provided_docs"], template=template_2 | |
) | |
llm_chain_2 = LLMChain( | |
llm=llm, | |
prompt=prompt2, | |
verbose=True, | |
) | |
search_template = """Write a brief, user-friendly search query based on the details below. The response should be concise and ready for direct use on a search engine. | |
Chat History: | |
{chat_history} | |
Question: {human_input} | |
Search Query::""" | |
search_prompt = PromptTemplate( | |
input_variables=["chat_history", "human_input"], template=search_template | |
) | |
search_llm = LLMChain( | |
llm=llm, | |
prompt=search_prompt, | |
# verbose=True, | |
) | |
previous_response = "" | |
provided_docs = "" | |
def conversational_chat(query): | |
global previous_response, provided_docs | |
for i in st.session_state['history'][-5:]: | |
if i is not None: | |
previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}\n" | |
provided_docs = "".join(st.session_state["docs"]) | |
result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs) | |
if 'search_query'in result.strip(): | |
search_query = search_llm.predict(chat_history=previous_response, human_input=query) | |
print(search_query) | |
web_result = get_web_result(search_query.strip()) | |
result = llm_chain_2.predict(web_result= web_result,chat_history=previous_response, human_input=query, provided_docs=provided_docs) | |
st.session_state['history'].append((query, result)) | |
# Keep only the last 5 history entries | |
st.session_state['history'] = st.session_state['history'][-5:] | |
return result | |
st.title("CRETA π€") | |
st.text("I am CRETA Your Friendly Assitant") | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Initialize messages | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hello ! Ask me anything"] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = [" "] | |
if 'docs' not in st.session_state: | |
st.session_state['docs'] = [] | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_url_text(url_link): | |
try: | |
loader = WebBaseLoader(url_link) | |
loader.requests_per_second = 1 | |
docs = loader.aload() | |
extracted_text = "" | |
for page in docs: | |
extracted_text += page.page_content | |
return extracted_text | |
except Exception as e: | |
print(f"Error fetching or processing URL: {e}") | |
return "" | |
with st.sidebar: | |
st.title("Add a file for CRETA memory:") | |
uploaded_files = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) | |
uploaded_url = st.text_input("Paste the Documentation URL:") | |
if st.button("Submit & Process"): | |
if uploaded_files or uploaded_url: | |
with st.spinner("Processing..."): | |
if uploaded_files: | |
st.session_state["docs"] += get_pdf_text(uploaded_files) | |
if uploaded_url: | |
st.session_state["docs"] += get_url_text(uploaded_url) | |
st.success("Processing complete!") | |
else: | |
st.error("Please upload at least one PDF file or provide a URL.") | |
# Create containers for chat history and user input | |
response_container = st.container() | |
container = st.container() | |
# User input form | |
user_input = st.chat_input("Ask Your Questions π..") | |
with container: | |
if user_input: | |
output = conversational_chat(user_input) | |
# answer = response_generator(output) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
# Display chat history | |
if st.session_state['generated']: | |
with response_container: | |
for i in range(len(st.session_state['generated'])): | |
if i != 0: | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts") | |