CRETA / app.py
Mr-Vicky-01's picture
Update app.py
376796a verified
import streamlit as st
import os
from streamlit_chat import message
from PyPDF2 import PdfReader
import google.generativeai as genai
from langchain.prompts import PromptTemplate
from langchain import LLMChain
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.tools import DuckDuckGoSearchRun
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest",
temperature=0.2)
search_engine = DuckDuckGoSearchRun()
def get_web_result(question):
result = search_engine.invoke(question)
return result.strip()
template = """You are a friendly chat assistant called "CRETA" having a conversation with a human and you are created by Pachaiappan [portfolio](https://mr-vicky-01.github.io/Portfolio/) an AI Specialist. If the question pertains to information that you do not have access to, respond with string 'search_query' only nothing else.
provided document:
{provided_docs}
previous_chat:
{chat_history}
Human: {human_input}
Chatbot:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input", "provided_docs"], template=template
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
# verbose=True,
)
template_2 = """read the web_result and Answer the fallowing question carefully, your response must be short and informative
web_result:
{web_result}
previous_chat:
{chat_history}
Question: {human_input}
Chatbot:"""
prompt2 = PromptTemplate(
input_variables=["web_result", "chat_history", "human_input", "provided_docs"], template=template_2
)
llm_chain_2 = LLMChain(
llm=llm,
prompt=prompt2,
verbose=True,
)
search_template = """Write a brief, user-friendly search query based on the details below. The response should be concise and ready for direct use on a search engine.
Chat History:
{chat_history}
Question: {human_input}
Search Query::"""
search_prompt = PromptTemplate(
input_variables=["chat_history", "human_input"], template=search_template
)
search_llm = LLMChain(
llm=llm,
prompt=search_prompt,
# verbose=True,
)
previous_response = ""
provided_docs = ""
def conversational_chat(query):
global previous_response, provided_docs
for i in st.session_state['history'][-5:]:
if i is not None:
previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}\n"
provided_docs = "".join(st.session_state["docs"])
result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs)
if 'search_query'in result.strip():
search_query = search_llm.predict(chat_history=previous_response, human_input=query)
print(search_query)
web_result = get_web_result(search_query.strip())
result = llm_chain_2.predict(web_result= web_result,chat_history=previous_response, human_input=query, provided_docs=provided_docs)
st.session_state['history'].append((query, result))
# Keep only the last 5 history entries
st.session_state['history'] = st.session_state['history'][-5:]
return result
st.title("CRETA πŸ€–")
st.text("I am CRETA Your Friendly Assitant")
if 'history' not in st.session_state:
st.session_state['history'] = []
# Initialize messages
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello ! Ask me anything"]
if 'past' not in st.session_state:
st.session_state['past'] = [" "]
if 'docs' not in st.session_state:
st.session_state['docs'] = []
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_url_text(url_link):
try:
loader = WebBaseLoader(url_link)
loader.requests_per_second = 1
docs = loader.aload()
extracted_text = ""
for page in docs:
extracted_text += page.page_content
return extracted_text
except Exception as e:
print(f"Error fetching or processing URL: {e}")
return ""
with st.sidebar:
st.title("Add a file for CRETA memory:")
uploaded_files = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
uploaded_url = st.text_input("Paste the Documentation URL:")
if st.button("Submit & Process"):
if uploaded_files or uploaded_url:
with st.spinner("Processing..."):
if uploaded_files:
st.session_state["docs"] += get_pdf_text(uploaded_files)
if uploaded_url:
st.session_state["docs"] += get_url_text(uploaded_url)
st.success("Processing complete!")
else:
st.error("Please upload at least one PDF file or provide a URL.")
# Create containers for chat history and user input
response_container = st.container()
container = st.container()
# User input form
user_input = st.chat_input("Ask Your Questions πŸ‘‰..")
with container:
if user_input:
output = conversational_chat(user_input)
# answer = response_generator(output)
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
# Display chat history
if st.session_state['generated']:
with response_container:
for i in range(len(st.session_state['generated'])):
if i != 0:
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="adventurer")
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts")