Spaces:
Sleeping
Sleeping
Update rm.py
Browse files
rm.py
CHANGED
|
@@ -8,218 +8,185 @@ from google import genai
|
|
| 8 |
import json
|
| 9 |
import logging
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
f_app = FirecrawlApp(api_key=os.getenv("FIRECRAWL_API_KEY"))
|
| 13 |
app = Flask(__name__)
|
| 14 |
CORS(app)
|
| 15 |
|
| 16 |
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 17 |
|
| 18 |
-
# Safe fallback so we never pass None into send_message
|
| 19 |
-
SYSTEM_PROMPT = os.getenv(
|
| 20 |
-
"SYSTEM_PROMPT",
|
| 21 |
-
"You are a helpful research assistant. Respond using a JSON state machine with states PLAN, CALL, OBSERVATION, OUTPUT."
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s")
|
| 25 |
-
log = logging.getLogger("rm.py")
|
| 26 |
-
|
| 27 |
-
# -------- Scholar search (location-aware) --------
|
| 28 |
-
def get_google_scholar_results(key_params: dict, location: str | None = None):
|
| 29 |
-
"""
|
| 30 |
-
Calls SerpAPI for Google Scholar results.
|
| 31 |
-
If `location` is provided, filter author profiles whose text contains that location.
|
| 32 |
-
"""
|
| 33 |
-
key_params["api_key"] = os.getenv("SERPAPI_API_KEY")
|
| 34 |
-
key_params["engine"] = "google_scholar"
|
| 35 |
-
key_params["hl"] = "en"
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
search = GoogleSearch(key_params)
|
| 38 |
results = search.get_dict()
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
filtered = []
|
| 46 |
-
for p in profiles:
|
| 47 |
-
# defensively join a few text fields and do a simple substring match
|
| 48 |
-
haystack_parts = [
|
| 49 |
-
str(p.get("name", "")),
|
| 50 |
-
str(p.get("affiliations", "")),
|
| 51 |
-
str(p.get("description", "")),
|
| 52 |
-
str(p.get("position", "")),
|
| 53 |
-
str(p.get("link", "")),
|
| 54 |
-
str(p.get("email", "")),
|
| 55 |
-
]
|
| 56 |
-
haystack = " | ".join(haystack_parts).lower()
|
| 57 |
-
if loc in haystack:
|
| 58 |
-
filtered.append(p)
|
| 59 |
-
profiles = filtered
|
| 60 |
-
|
| 61 |
-
return profiles, organic
|
| 62 |
-
|
| 63 |
-
def get_results(query):
|
| 64 |
-
"""
|
| 65 |
-
Location-aware Google Scholar retrieval.
|
| 66 |
-
|
| 67 |
-
Accepts:
|
| 68 |
-
- string query, OR
|
| 69 |
-
- dict with keys: {"query" or "q", "location" (optional)}
|
| 70 |
-
|
| 71 |
-
Returns: (profiles, answer, keys)
|
| 72 |
-
- profiles: possibly filtered by location
|
| 73 |
-
- answer: simplified list of organic results
|
| 74 |
-
- keys: keys present in the first organic result (if any)
|
| 75 |
-
"""
|
| 76 |
-
if isinstance(query, dict):
|
| 77 |
-
q = query.get("query") or query.get("q") or ""
|
| 78 |
-
location = query.get("location")
|
| 79 |
else:
|
| 80 |
-
|
| 81 |
-
location = None
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
answer = []
|
| 87 |
-
|
| 88 |
-
keys = organic[0].keys() if organic and len(organic) > 0 else []
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
output = {}
|
| 93 |
-
if "title" in
|
| 94 |
-
output["title"] =
|
| 95 |
-
if "result_id" in
|
| 96 |
-
output["result_id"] =
|
| 97 |
-
if "link" in
|
| 98 |
-
output["link"] =
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
answer.append(output)
|
|
|
|
| 109 |
|
| 110 |
-
return profiles,
|
| 111 |
|
| 112 |
-
# -------- Scraping / LLM helpers --------
|
| 113 |
def get_abstract(url: str):
|
| 114 |
-
scrape_result = f_app.
|
| 115 |
if "Abstract" in scrape_result.html:
|
| 116 |
offset = scrape_result.html.find("Abstract")
|
| 117 |
start = scrape_result.html[offset:].find("<p>")
|
| 118 |
-
end = scrape_result.html[offset
|
| 119 |
-
return scrape_result.html[offset
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
return scrape_result.html
|
| 125 |
|
| 126 |
-
def get_response(chat_client,
|
| 127 |
-
# never pass None to the SDK
|
| 128 |
-
if user is None:
|
| 129 |
-
user = ""
|
| 130 |
response = chat_client.send_message(user)
|
| 131 |
return response.candidates[0].content.parts[0].text
|
| 132 |
|
| 133 |
def convert_to_json(text):
|
| 134 |
start = text.find("{")
|
| 135 |
end = text[::-1].find("}")
|
| 136 |
-
json_text = text[start : -end]
|
| 137 |
try:
|
| 138 |
return json.loads(json_text)
|
| 139 |
except Exception as e:
|
| 140 |
return "Json Parse Error due to " + str(e)
|
| 141 |
|
| 142 |
-
def get_observation(function,
|
| 143 |
-
functions = ["get_results",
|
| 144 |
if function == functions[0]:
|
| 145 |
-
|
| 146 |
-
q = inp.get("query") or inp.get("q") or ""
|
| 147 |
-
location = inp.get("location")
|
| 148 |
-
profiles, answer, keys = get_results({"query": q, "location": location})
|
| 149 |
-
else:
|
| 150 |
-
profiles, answer, keys = get_results(inp)
|
| 151 |
out_dict = {
|
| 152 |
-
"state": "OBSERVATION",
|
| 153 |
-
"observation": {
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
}
|
| 158 |
}
|
| 159 |
elif function == functions[1]:
|
| 160 |
html_text = scrape_web(inp)
|
| 161 |
out_dict = {
|
| 162 |
-
"state": "OBSERVATION",
|
| 163 |
-
"observation": {
|
|
|
|
|
|
|
| 164 |
}
|
| 165 |
else:
|
| 166 |
out_dict = {
|
| 167 |
-
"state": "OBSERVATION",
|
| 168 |
-
"observation": {
|
|
|
|
|
|
|
| 169 |
}
|
| 170 |
return out_dict
|
| 171 |
|
| 172 |
-
def get_output(chat_client,
|
| 173 |
-
response = get_response(chat_client,
|
| 174 |
output = convert_to_json(response)
|
| 175 |
-
while
|
| 176 |
-
if output
|
| 177 |
-
response = get_response(chat_client,
|
| 178 |
output = convert_to_json(response)
|
| 179 |
-
elif output
|
| 180 |
-
function = output
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
inp_to_fn = params_obj[k]
|
| 186 |
-
obs = get_observation(function, inp_to_fn)
|
| 187 |
-
response = get_response(chat_client, str(obs))
|
| 188 |
output = convert_to_json(response)
|
| 189 |
-
elif output
|
| 190 |
-
response = get_response(chat_client,
|
| 191 |
output = convert_to_json(response)
|
| 192 |
else:
|
| 193 |
-
response = get_response(chat_client,
|
| 194 |
output = convert_to_json(response)
|
| 195 |
return output
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def chat(query: str):
|
| 198 |
-
chat_client = client.chats.create(
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return output["output"]
|
| 203 |
|
| 204 |
-
|
| 205 |
-
@app.route("/",
|
| 206 |
def default():
|
| 207 |
return jsonify({"message": "Backend Working Successfully"})
|
| 208 |
|
| 209 |
-
@app.route("/chat",
|
| 210 |
def get_chat_results():
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
query = data.get("query")
|
| 214 |
-
else: # GET
|
| 215 |
-
query = request.args.get("query")
|
| 216 |
-
|
| 217 |
-
if not query:
|
| 218 |
-
return jsonify({"error": "No query provided"}), 400
|
| 219 |
-
|
| 220 |
output = chat(query)
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
|
| 225 |
|
|
|
|
| 8 |
import json
|
| 9 |
import logging
|
| 10 |
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
f_app = FirecrawlApp(api_key=os.getenv("FIRECRAWL_API_KEY"))
|
| 15 |
app = Flask(__name__)
|
| 16 |
CORS(app)
|
| 17 |
|
| 18 |
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT")
|
| 22 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')
|
| 23 |
+
|
| 24 |
+
def get_google_scholar_results(key_params: dict):
|
| 25 |
+
key_params['api_key'] = os.getenv("SERPAPI_API_KEY")
|
| 26 |
+
key_params['engine'] = "google_scholar"
|
| 27 |
+
key_params['hl'] = "en"
|
| 28 |
search = GoogleSearch(key_params)
|
| 29 |
results = search.get_dict()
|
| 30 |
+
if "profiles" in results and "organic_results" in results:
|
| 31 |
+
return results["profiles"],results["organic_results"]
|
| 32 |
+
elif "profiles" in results:
|
| 33 |
+
return results["profiles"],None
|
| 34 |
+
elif "organic_results" in results:
|
| 35 |
+
return None,results["organic_results"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
else:
|
| 37 |
+
return None,None
|
|
|
|
| 38 |
|
| 39 |
+
def get_results(query: str):
|
| 40 |
+
'''
|
| 41 |
+
This function is used to get the results from the Google Scholar API.
|
| 42 |
+
It takes a query as input and returns a list of dictionaries, each containing the information about a paper/author.
|
| 43 |
+
The keys of the dictionaries are the fields of the paper.
|
| 44 |
+
|
| 45 |
+
Keys of the dictionary are:
|
| 46 |
+
dict_keys(['position', 'title', 'result_id', 'link', 'snippet', 'publication_info', 'resources', 'inline_links'])
|
| 47 |
+
'''
|
| 48 |
+
params = {
|
| 49 |
+
"q": query,
|
| 50 |
+
}
|
| 51 |
|
| 52 |
answer = []
|
| 53 |
+
keys = []
|
|
|
|
| 54 |
|
| 55 |
+
profiles,result = get_google_scholar_results(params)
|
| 56 |
+
if result:
|
| 57 |
+
keys = result[0].keys()
|
| 58 |
+
for i in range(len(result)):
|
| 59 |
output = {}
|
| 60 |
+
if "title" in result[i]:
|
| 61 |
+
output["title"] = result[i]["title"]
|
| 62 |
+
if "result_id" in result[i]:
|
| 63 |
+
output["result_id"] = result[i]["result_id"]
|
| 64 |
+
if "link" in result[i]:
|
| 65 |
+
output["link"] = result[i]["link"]
|
| 66 |
+
if "https://www.annualreviews" in result[i]["link"]:
|
| 67 |
+
output["abstract"] = get_abstract(result[i]["link"])
|
| 68 |
+
if "snippet" in result[i]:
|
| 69 |
+
output["snippet"] = result[i]["snippet"]
|
| 70 |
+
if "publication_info" in result[i]:
|
| 71 |
+
output["publication_info"] = result[i]["publication_info"]
|
| 72 |
+
if "resources" in result[i]:
|
| 73 |
+
output["resources"] = result[i]["resources"]
|
| 74 |
+
|
| 75 |
answer.append(output)
|
| 76 |
+
|
| 77 |
|
| 78 |
+
return profiles,answer,keys
|
| 79 |
|
|
|
|
| 80 |
def get_abstract(url: str):
|
| 81 |
+
scrape_result = f_app.scrape(url, formats=['markdown', 'html'])
|
| 82 |
if "Abstract" in scrape_result.html:
|
| 83 |
offset = scrape_result.html.find("Abstract")
|
| 84 |
start = scrape_result.html[offset:].find("<p>")
|
| 85 |
+
end = scrape_result.html[offset+start:].find("</p>")
|
| 86 |
+
return scrape_result.html[offset+start:offset+start+end]
|
| 87 |
+
else:
|
| 88 |
+
return "Abstract not found"
|
| 89 |
+
|
| 90 |
+
def scrape_web(url:str):
|
| 91 |
+
'''
|
| 92 |
+
This function is used inorder to scrape any websitye based on its url
|
| 93 |
+
Returns the html code of the webpage
|
| 94 |
+
'''
|
| 95 |
+
scrape_result = f_app.scrape(url, formats=['markdown', 'html'])
|
| 96 |
return scrape_result.html
|
| 97 |
|
| 98 |
+
def get_response(chat_client,user):
|
|
|
|
|
|
|
|
|
|
| 99 |
response = chat_client.send_message(user)
|
| 100 |
return response.candidates[0].content.parts[0].text
|
| 101 |
|
| 102 |
def convert_to_json(text):
|
| 103 |
start = text.find("{")
|
| 104 |
end = text[::-1].find("}")
|
| 105 |
+
json_text = text[start : -end]
|
| 106 |
try:
|
| 107 |
return json.loads(json_text)
|
| 108 |
except Exception as e:
|
| 109 |
return "Json Parse Error due to " + str(e)
|
| 110 |
|
| 111 |
+
def get_observation(function,inp):
|
| 112 |
+
functions = ["get_results","scrape_web"]
|
| 113 |
if function == functions[0]:
|
| 114 |
+
profiles,answer,keys = get_results(inp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
out_dict = {
|
| 116 |
+
"state" : "OBSERVATION",
|
| 117 |
+
"observation" : {
|
| 118 |
+
"profiles" : profiles,
|
| 119 |
+
"answer" : answer,
|
| 120 |
+
"keys" : keys
|
| 121 |
}
|
| 122 |
}
|
| 123 |
elif function == functions[1]:
|
| 124 |
html_text = scrape_web(inp)
|
| 125 |
out_dict = {
|
| 126 |
+
"state" : "OBSERVATION",
|
| 127 |
+
"observation" : {
|
| 128 |
+
"html_text" : html_text
|
| 129 |
+
}
|
| 130 |
}
|
| 131 |
else:
|
| 132 |
out_dict = {
|
| 133 |
+
"state" : "OBSERVATION",
|
| 134 |
+
"observation" : {
|
| 135 |
+
"message":"Function Not found, Please Retry"
|
| 136 |
+
}
|
| 137 |
}
|
| 138 |
return out_dict
|
| 139 |
|
| 140 |
+
def get_output(chat_client,inp):
|
| 141 |
+
response = get_response(chat_client,str(inp))
|
| 142 |
output = convert_to_json(response)
|
| 143 |
+
while output["state"] != "OUTPUT":
|
| 144 |
+
if output["state"] == "PLAN":
|
| 145 |
+
response = get_response(chat_client,str(output))
|
| 146 |
output = convert_to_json(response)
|
| 147 |
+
elif output["state"] == "CALL":
|
| 148 |
+
function = output["function_name"]
|
| 149 |
+
for i in output["params"].keys():
|
| 150 |
+
inp = output["params"][i]
|
| 151 |
+
obs = get_observation(function,inp)
|
| 152 |
+
response = get_response(chat_client,str(obs))
|
|
|
|
|
|
|
|
|
|
| 153 |
output = convert_to_json(response)
|
| 154 |
+
elif output["state"] == "OBSERVATION":
|
| 155 |
+
response = get_response(chat_client,str(output))
|
| 156 |
output = convert_to_json(response)
|
| 157 |
else:
|
| 158 |
+
response = get_response(chat_client,str(output))
|
| 159 |
output = convert_to_json(response)
|
| 160 |
return output
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
|
| 165 |
def chat(query: str):
|
| 166 |
+
chat_client = client.chats.create(
|
| 167 |
+
model="gemini-2.5-flash"
|
| 168 |
+
)
|
| 169 |
+
response = get_response(chat_client,SYSTEM_PROMPT)
|
| 170 |
+
inp = {
|
| 171 |
+
"state" : "START",
|
| 172 |
+
"user" : query
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
output = get_output(chat_client,inp)
|
| 176 |
return output["output"]
|
| 177 |
|
| 178 |
+
|
| 179 |
+
@app.route("/",methods=["GET"])
|
| 180 |
def default():
|
| 181 |
return jsonify({"message": "Backend Working Successfully"})
|
| 182 |
|
| 183 |
+
@app.route("/chat",methods=["POST","GET"])
|
| 184 |
def get_chat_results():
|
| 185 |
+
query = request.json.get("query")
|
| 186 |
+
app.logger.info(f"Chat Initiated : {query}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
output = chat(query)
|
| 188 |
+
app.logger.info("Output Parsed")
|
| 189 |
+
return jsonify({"output":output})
|
| 190 |
|
| 191 |
|
| 192 |
|