MAERec-Gradio / mmocr /utils /bbox_utils.py
Mountchicken's picture
Upload 704 files
9bf4bd7
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import numpy as np
from shapely.geometry import LineString, Point
from mmocr.utils.check_argument import is_type_list
from mmocr.utils.point_utils import point_distance, points_center
from mmocr.utils.typing_utils import ArrayLike
def rescale_bbox(bbox: np.ndarray,
scale_factor: Tuple[int, int],
mode: str = 'mul') -> np.ndarray:
"""Rescale a bounding box according to scale_factor.
The behavior is different depending on the mode. When mode is 'mul', the
coordinates will be multiplied by scale_factor, which is usually used in
preprocessing transforms such as :func:`Resize`.
The coordinates will be divided by scale_factor if mode is 'div'. It can be
used in postprocessors to recover the bbox in the original image size.
Args:
bbox (ndarray): A bounding box [x1, y1, x2, y2].
scale_factor (tuple(int, int)): (w_scale, h_scale).
model (str): Rescale mode. Can be 'mul' or 'div'. Defaults to 'mul'.
Returns:
np.ndarray: Rescaled bbox.
"""
assert mode in ['mul', 'div']
bbox = np.array(bbox, dtype=np.float32)
bbox_shape = bbox.shape
reshape_bbox = bbox.reshape(-1, 2)
scale_factor = np.array(scale_factor, dtype=float)
if mode == 'div':
scale_factor = 1 / scale_factor
bbox = (reshape_bbox * scale_factor[None]).reshape(bbox_shape)
return bbox
def rescale_bboxes(bboxes: np.ndarray,
scale_factor: Tuple[int, int],
mode: str = 'mul') -> np.ndarray:
"""Rescale bboxes according to scale_factor.
The behavior is different depending on the mode. When mode is 'mul', the
coordinates will be multiplied by scale_factor, which is usually used in
preprocessing transforms such as :func:`Resize`.
The coordinates will be divided by scale_factor if mode is 'div'. It can be
used in postprocessors to recover the bboxes in the original
image size.
Args:
bboxes (np.ndarray]): Bounding bboxes in shape (N, 4)
scale_factor (tuple(int, int)): (w_scale, h_scale).
model (str): Rescale mode. Can be 'mul' or 'div'. Defaults to 'mul'.
Returns:
list[np.ndarray]: Rescaled bboxes.
"""
bboxes = rescale_bbox(bboxes, scale_factor, mode)
return bboxes
def bbox2poly(bbox: ArrayLike, mode: str = 'xyxy') -> np.array:
"""Converting a bounding box to a polygon.
Args:
bbox (ArrayLike): A bbox. In any form can be accessed by 1-D indices.
E.g. list[float], np.ndarray, or torch.Tensor. bbox is written in
[x1, y1, x2, y2].
mode (str): Specify the format of bbox. Can be 'xyxy' or 'xywh'.
Defaults to 'xyxy'.
Returns:
np.array: The converted polygon [x1, y1, x2, y1, x2, y2, x1, y2].
"""
assert len(bbox) == 4
if mode == 'xyxy':
x1, y1, x2, y2 = bbox
poly = np.array([x1, y1, x2, y1, x2, y2, x1, y2])
elif mode == 'xywh':
x, y, w, h = bbox
poly = np.array([x, y, x + w, y, x + w, y + h, x, y + h])
else:
raise NotImplementedError('Not supported mode.')
return poly
def is_on_same_line(box_a, box_b, min_y_overlap_ratio=0.8):
# TODO Check if it should be deleted after ocr.py refactored
"""Check if two boxes are on the same line by their y-axis coordinates.
Two boxes are on the same line if they overlap vertically, and the length
of the overlapping line segment is greater than min_y_overlap_ratio * the
height of either of the boxes.
Args:
box_a (list), box_b (list): Two bounding boxes to be checked
min_y_overlap_ratio (float): The minimum vertical overlapping ratio
allowed for boxes in the same line
Returns:
The bool flag indicating if they are on the same line
"""
a_y_min = np.min(box_a[1::2])
b_y_min = np.min(box_b[1::2])
a_y_max = np.max(box_a[1::2])
b_y_max = np.max(box_b[1::2])
# Make sure that box a is always the box above another
if a_y_min > b_y_min:
a_y_min, b_y_min = b_y_min, a_y_min
a_y_max, b_y_max = b_y_max, a_y_max
if b_y_min <= a_y_max:
if min_y_overlap_ratio is not None:
sorted_y = sorted([b_y_min, b_y_max, a_y_max])
overlap = sorted_y[1] - sorted_y[0]
min_a_overlap = (a_y_max - a_y_min) * min_y_overlap_ratio
min_b_overlap = (b_y_max - b_y_min) * min_y_overlap_ratio
return overlap >= min_a_overlap or \
overlap >= min_b_overlap
else:
return True
return False
def stitch_boxes_into_lines(boxes, max_x_dist=10, min_y_overlap_ratio=0.8):
# TODO Check if it should be deleted after ocr.py refactored
"""Stitch fragmented boxes of words into lines.
Note: part of its logic is inspired by @Johndirr
(https://github.com/faustomorales/keras-ocr/issues/22)
Args:
boxes (list): List of ocr results to be stitched
max_x_dist (int): The maximum horizontal distance between the closest
edges of neighboring boxes in the same line
min_y_overlap_ratio (float): The minimum vertical overlapping ratio
allowed for any pairs of neighboring boxes in the same line
Returns:
merged_boxes(list[dict]): List of merged boxes and texts
"""
if len(boxes) <= 1:
return boxes
merged_boxes = []
# sort groups based on the x_min coordinate of boxes
x_sorted_boxes = sorted(boxes, key=lambda x: np.min(x['box'][::2]))
# store indexes of boxes which are already parts of other lines
skip_idxs = set()
i = 0
# locate lines of boxes starting from the leftmost one
for i in range(len(x_sorted_boxes)):
if i in skip_idxs:
continue
# the rightmost box in the current line
rightmost_box_idx = i
line = [rightmost_box_idx]
for j in range(i + 1, len(x_sorted_boxes)):
if j in skip_idxs:
continue
if is_on_same_line(x_sorted_boxes[rightmost_box_idx]['box'],
x_sorted_boxes[j]['box'], min_y_overlap_ratio):
line.append(j)
skip_idxs.add(j)
rightmost_box_idx = j
# split line into lines if the distance between two neighboring
# sub-lines' is greater than max_x_dist
lines = []
line_idx = 0
lines.append([line[0]])
rightmost = np.max(x_sorted_boxes[line[0]]['box'][::2])
for k in range(1, len(line)):
curr_box = x_sorted_boxes[line[k]]
dist = np.min(curr_box['box'][::2]) - rightmost
if dist > max_x_dist:
line_idx += 1
lines.append([])
lines[line_idx].append(line[k])
rightmost = max(rightmost, np.max(curr_box['box'][::2]))
# Get merged boxes
for box_group in lines:
merged_box = {}
merged_box['text'] = ' '.join(
[x_sorted_boxes[idx]['text'] for idx in box_group])
x_min, y_min = float('inf'), float('inf')
x_max, y_max = float('-inf'), float('-inf')
for idx in box_group:
x_max = max(np.max(x_sorted_boxes[idx]['box'][::2]), x_max)
x_min = min(np.min(x_sorted_boxes[idx]['box'][::2]), x_min)
y_max = max(np.max(x_sorted_boxes[idx]['box'][1::2]), y_max)
y_min = min(np.min(x_sorted_boxes[idx]['box'][1::2]), y_min)
merged_box['box'] = [
x_min, y_min, x_max, y_min, x_max, y_max, x_min, y_max
]
merged_boxes.append(merged_box)
return merged_boxes
def bezier2polygon(bezier_points: np.ndarray,
num_sample: int = 20) -> List[np.ndarray]:
# TODO check test later
"""Sample points from the boundary of a polygon enclosed by two Bezier
curves, which are controlled by ``bezier_points``.
Args:
bezier_points (ndarray): A :math:`(2, 4, 2)` array of 8 Bezeir points
or its equalivance. The first 4 points control the curve at one
side and the last four control the other side.
num_sample (int): The number of sample points at each Bezeir curve.
Defaults to 20.
Returns:
list[ndarray]: A list of 2*num_sample points representing the polygon
extracted from Bezier curves.
Warning:
The points are not guaranteed to be ordered. Please use
:func:`mmocr.utils.sort_points` to sort points if necessary.
"""
assert num_sample > 0, 'The sampling number should greater than 0'
bezier_points = np.asarray(bezier_points)
assert np.prod(
bezier_points.shape) == 16, 'Need 8 Bezier control points to continue!'
bezier = bezier_points.reshape(2, 4, 2).transpose(0, 2, 1).reshape(4, 4)
u = np.linspace(0, 1, num_sample)
points = np.outer((1 - u) ** 3, bezier[:, 0]) \
+ np.outer(3 * u * ((1 - u) ** 2), bezier[:, 1]) \
+ np.outer(3 * (u ** 2) * (1 - u), bezier[:, 2]) \
+ np.outer(u ** 3, bezier[:, 3])
# Convert points to polygon
points = np.concatenate((points[:, :2], points[:, 2:]), axis=0)
return points.tolist()
def sort_vertex(points_x, points_y):
# TODO Add typehints & docstring & test
"""Sort box vertices in clockwise order from left-top first.
Args:
points_x (list[float]): x of four vertices.
points_y (list[float]): y of four vertices.
Returns:
sorted_points_x (list[float]): x of sorted four vertices.
sorted_points_y (list[float]): y of sorted four vertices.
"""
assert is_type_list(points_x, (float, int))
assert is_type_list(points_y, (float, int))
assert len(points_x) == 4
assert len(points_y) == 4
vertices = np.stack((points_x, points_y), axis=-1).astype(np.float32)
vertices = _sort_vertex(vertices)
sorted_points_x = list(vertices[:, 0])
sorted_points_y = list(vertices[:, 1])
return sorted_points_x, sorted_points_y
def _sort_vertex(vertices):
# TODO Add typehints & docstring & test
assert vertices.ndim == 2
assert vertices.shape[-1] == 2
N = vertices.shape[0]
if N == 0:
return vertices
center = np.mean(vertices, axis=0)
directions = vertices - center
angles = np.arctan2(directions[:, 1], directions[:, 0])
sort_idx = np.argsort(angles)
vertices = vertices[sort_idx]
left_top = np.min(vertices, axis=0)
dists = np.linalg.norm(left_top - vertices, axis=-1, ord=2)
lefttop_idx = np.argmin(dists)
indexes = (np.arange(N, dtype=np.int_) + lefttop_idx) % N
return vertices[indexes]
def sort_vertex8(points):
# TODO Add typehints & docstring & test
"""Sort vertex with 8 points [x1 y1 x2 y2 x3 y3 x4 y4]"""
assert len(points) == 8
vertices = _sort_vertex(np.array(points, dtype=np.float32).reshape(-1, 2))
sorted_box = list(vertices.flatten())
return sorted_box
def bbox_center_distance(box1: ArrayLike, box2: ArrayLike) -> float:
"""Calculate the distance between the center points of two bounding boxes.
Args:
box1 (ArrayLike): The first bounding box
represented in [x1, y1, x2, y2].
box2 (ArrayLike): The second bounding box
represented in [x1, y1, x2, y2].
Returns:
float: The distance between the center points of two bounding boxes.
"""
return point_distance(points_center(box1), points_center(box2))
def bbox_diag_distance(box: ArrayLike) -> float:
"""Calculate the diagonal length of a bounding box (distance between the
top-left and bottom-right).
Args:
box (ArrayLike): The bounding box represented in
[x1, y1, x2, y2, x3, y3, x4, y4] or [x1, y1, x2, y2].
Returns:
float: The diagonal length of the bounding box.
"""
box = np.array(box, dtype=np.float32)
assert (box.size == 8 or box.size == 4)
if box.size == 8:
diag = point_distance(box[0:2], box[4:6])
elif box.size == 4:
diag = point_distance(box[0:2], box[2:4])
return diag
def bbox_jitter(points_x, points_y, jitter_ratio_x=0.5, jitter_ratio_y=0.1):
"""Jitter on the coordinates of bounding box.
Args:
points_x (list[float | int]): List of y for four vertices.
points_y (list[float | int]): List of x for four vertices.
jitter_ratio_x (float): Horizontal jitter ratio relative to the height.
jitter_ratio_y (float): Vertical jitter ratio relative to the height.
"""
assert len(points_x) == 4
assert len(points_y) == 4
assert isinstance(jitter_ratio_x, float)
assert isinstance(jitter_ratio_y, float)
assert 0 <= jitter_ratio_x < 1
assert 0 <= jitter_ratio_y < 1
points = [Point(points_x[i], points_y[i]) for i in range(4)]
line_list = [
LineString([points[i], points[i + 1 if i < 3 else 0]])
for i in range(4)
]
tmp_h = max(line_list[1].length, line_list[3].length)
for i in range(4):
jitter_pixel_x = (np.random.rand() - 0.5) * 2 * jitter_ratio_x * tmp_h
jitter_pixel_y = (np.random.rand() - 0.5) * 2 * jitter_ratio_y * tmp_h
points_x[i] += jitter_pixel_x
points_y[i] += jitter_pixel_y