Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
from typing import List | |
from mmdet.datasets.api_wrappers import COCO | |
from mmocr.datasets.preparers.parsers.base import BaseParser | |
from mmocr.registry import DATA_PARSERS | |
class COCOTextDetAnnParser(BaseParser): | |
"""COCO-like Format Text Detection Parser. | |
Args: | |
data_root (str): The root path of the dataset. Defaults to None. | |
nproc (int): The number of processes to parse the annotation. Defaults | |
to 1. | |
variant (str): Variant of COCO dataset, options are ['standard', | |
'cocotext', 'textocr']. Defaults to 'standard'. | |
""" | |
def __init__(self, | |
split: str, | |
nproc: int = 1, | |
variant: str = 'standard') -> None: | |
super().__init__(nproc=nproc, split=split) | |
assert variant in ['standard', 'cocotext', 'textocr'], \ | |
f'variant {variant} is not supported' | |
self.variant = variant | |
def parse_files(self, img_dir: str, ann_path: str) -> List: | |
"""Parse single annotation.""" | |
samples = list() | |
coco = COCO(ann_path) | |
if self.variant == 'cocotext' or self.variant == 'textocr': | |
# cocotext stores both 'train' and 'val' split in one annotation | |
# file, and uses the 'set' field to distinguish them. | |
if self.variant == 'cocotext': | |
for img in coco.dataset['imgs']: | |
if self.split == coco.dataset['imgs'][img]['set']: | |
coco.imgs[img] = coco.dataset['imgs'][img] | |
# textocr stores 'train' and 'val'split separately | |
elif self.variant == 'textocr': | |
coco.imgs = coco.dataset['imgs'] | |
# both cocotext and textocr stores the annotation ID in the | |
# 'imgToAnns' field, so we need to convert it to the 'anns' field | |
for img in coco.dataset['imgToAnns']: | |
ann_ids = coco.dataset['imgToAnns'][img] | |
anns = [ | |
coco.dataset['anns'][str(ann_id)] for ann_id in ann_ids | |
] | |
coco.dataset['imgToAnns'][img] = anns | |
coco.imgToAnns = coco.dataset['imgToAnns'] | |
coco.anns = coco.dataset['anns'] | |
img_ids = coco.get_img_ids() | |
total_ann_ids = [] | |
for img_id in img_ids: | |
img_info = coco.load_imgs([img_id])[0] | |
img_info['img_id'] = img_id | |
img_path = img_info['file_name'] | |
ann_ids = coco.get_ann_ids(img_ids=[img_id]) | |
if len(ann_ids) == 0: | |
continue | |
ann_ids = [str(ann_id) for ann_id in ann_ids] | |
ann_info = coco.load_anns(ann_ids) | |
total_ann_ids.extend(ann_ids) | |
instances = list() | |
for ann in ann_info: | |
if self.variant == 'standard': | |
# standard coco format use 'segmentation' field to store | |
# the polygon and 'iscrowd' field to store the ignore flag, | |
# and the 'text' field to store the text content. | |
instances.append( | |
dict( | |
poly=ann['segmentation'][0], | |
text=ann.get('text', None), | |
ignore=ann.get('iscrowd', False))) | |
elif self.variant == 'cocotext': | |
# cocotext use 'utf8_string' field to store the text and | |
# 'legibility' field to store the ignore flag, and the | |
# 'mask' field to store the polygon. | |
instances.append( | |
dict( | |
poly=ann['mask'], | |
text=ann.get('utf8_string', None), | |
ignore=ann['legibility'] == 'illegible')) | |
elif self.variant == 'textocr': | |
# textocr use 'utf8_string' field to store the text and | |
# the 'points' field to store the polygon, '.' is used to | |
# represent the ignored text. | |
text = ann.get('utf8_string', None) | |
instances.append( | |
dict( | |
poly=ann['points'], text=text, ignore=text == '.')) | |
samples.append((osp.join(img_dir, | |
osp.basename(img_path)), instances)) | |
return samples | |