Spaces:
Running
Running
_base_ = [ | |
'_base_psenet_resnet50_fpnf.py', | |
'../_base_/datasets/ctw1500.py', | |
'../_base_/default_runtime.py', | |
'../_base_/schedules/schedule_adam_600e.py', | |
] | |
# optimizer | |
optim_wrapper = dict(optimizer=dict(lr=1e-4)) | |
train_cfg = dict(val_interval=40) | |
param_scheduler = [ | |
dict(type='MultiStepLR', milestones=[200, 400], end=600), | |
] | |
# dataset settings | |
ctw1500_textdet_train = _base_.ctw1500_textdet_train | |
ctw1500_textdet_test = _base_.ctw1500_textdet_test | |
test_pipeline_ctw = [ | |
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1280, 1280), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
] | |
# pipeline settings | |
ctw1500_textdet_train.pipeline = _base_.train_pipeline | |
ctw1500_textdet_test.pipeline = test_pipeline_ctw | |
train_dataloader = dict( | |
batch_size=16, | |
num_workers=8, | |
persistent_workers=False, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=ctw1500_textdet_train) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=1, | |
persistent_workers=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=ctw1500_textdet_test) | |
test_dataloader = val_dataloader | |
auto_scale_lr = dict(base_batch_size=64 * 4) | |