MAERec-Gradio / configs /textdet /panet /panet_resnet50_fpem-ffm_600e_icdar2017.py
Mountchicken's picture
Upload 704 files
9bf4bd7
_base_ = [
'../_base_/datasets/icdar2017.py',
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_adam_600e.py',
'_base_panet_resnet50_fpem-ffm.py',
]
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True,
),
dict(type='ShortScaleAspectJitter', short_size=800, scale_divisor=32),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='RandomRotate', max_angle=10),
dict(type='TextDetRandomCrop', target_size=(800, 800)),
dict(type='Pad', size=(800, 800)),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=32.0 / 255,
saturation=0.5),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
# TODO Replace with mmcv.RescaleToShort when it's ready
dict(
type='ShortScaleAspectJitter',
short_size=800,
scale_divisor=1,
ratio_range=(1.0, 1.0),
aspect_ratio_range=(1.0, 1.0)),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
icdar2017_textdet_train = _base_.icdar2017_textdet_train
icdar2017_textdet_test = _base_.icdar2017_textdet_test
# pipeline settings
icdar2017_textdet_train.pipeline = train_pipeline
icdar2017_textdet_test.pipeline = test_pipeline
train_dataloader = dict(
batch_size=64,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=icdar2017_textdet_train)
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=icdar2017_textdet_test)
test_dataloader = val_dataloader
val_evaluator = dict(
type='HmeanIOUMetric', pred_score_thrs=dict(start=0.3, stop=1, step=0.05))
test_evaluator = val_evaluator
auto_scale_lr = dict(base_batch_size=64)