Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmengine.structures import BaseDataElement, InstanceData | |
class TextDetDataSample(BaseDataElement): | |
"""A data structure interface of MMOCR. They are used as interfaces between | |
different components. | |
The attributes in ``TextDetDataSample`` are divided into two parts: | |
- ``gt_instances``(InstanceData): Ground truth of instance annotations. | |
- ``pred_instances``(InstanceData): Instances of model predictions. | |
Examples: | |
>>> import torch | |
>>> import numpy as np | |
>>> from mmengine.structures import InstanceData | |
>>> from mmocr.data import TextDetDataSample | |
>>> # gt_instances | |
>>> data_sample = TextDetDataSample() | |
>>> img_meta = dict(img_shape=(800, 1196, 3), | |
... pad_shape=(800, 1216, 3)) | |
>>> gt_instances = InstanceData(metainfo=img_meta) | |
>>> gt_instances.bboxes = torch.rand((5, 4)) | |
>>> gt_instances.labels = torch.rand((5,)) | |
>>> data_sample.gt_instances = gt_instances | |
>>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys() | |
>>> len(data_sample.gt_instances) | |
5 | |
>>> print(data_sample) | |
<TextDetDataSample( | |
META INFORMATION | |
DATA FIELDS | |
gt_instances: <InstanceData( | |
META INFORMATION | |
pad_shape: (800, 1216, 3) | |
img_shape: (800, 1196, 3) | |
DATA FIELDS | |
labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098]) | |
bboxes: | |
tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01], | |
[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01], | |
[7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01], | |
[2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01], | |
[4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]]) | |
) at 0x7f21fb1b9190> | |
) at 0x7f21fb1b9880> | |
>>> # pred_instances | |
>>> pred_instances = InstanceData(metainfo=img_meta) | |
>>> pred_instances.bboxes = torch.rand((5, 4)) | |
>>> pred_instances.scores = torch.rand((5,)) | |
>>> data_sample = TextDetDataSample(pred_instances=pred_instances) | |
>>> assert 'pred_instances' in data_sample | |
>>> data_sample = TextDetDataSample() | |
>>> gt_instances_data = dict( | |
... bboxes=torch.rand(2, 4), | |
... labels=torch.rand(2), | |
... masks=np.random.rand(2, 2, 2)) | |
>>> gt_instances = InstanceData(**gt_instances_data) | |
>>> data_sample.gt_instances = gt_instances | |
>>> assert 'gt_instances' in data_sample | |
>>> assert 'masks' in data_sample.gt_instances | |
""" | |
def gt_instances(self) -> InstanceData: | |
"""InstanceData: groundtruth instances.""" | |
return self._gt_instances | |
def gt_instances(self, value: InstanceData): | |
"""gt_instances setter.""" | |
self.set_field(value, '_gt_instances', dtype=InstanceData) | |
def gt_instances(self): | |
"""gt_instances deleter.""" | |
del self._gt_instances | |
def pred_instances(self) -> InstanceData: | |
"""InstanceData: prediction instances.""" | |
return self._pred_instances | |
def pred_instances(self, value: InstanceData): | |
"""pred_instances setter.""" | |
self.set_field(value, '_pred_instances', dtype=InstanceData) | |
def pred_instances(self): | |
"""pred_instances deleter.""" | |
del self._pred_instances | |