MAERec-Gradio / mmocr /models /textdet /postprocessors /textsnake_postprocessor.py
Mountchicken's picture
Upload 704 files
9bf4bd7
raw
history blame
9.79 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence
import cv2
import numpy as np
import torch
from mmengine.structures import InstanceData
from numpy.linalg import norm
from skimage.morphology import skeletonize
from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from mmocr.utils import fill_hole
from .base import BaseTextDetPostProcessor
@MODELS.register_module()
class TextSnakePostprocessor(BaseTextDetPostProcessor):
"""Decoding predictions of TextSnake to instances. This was partially
adapted from https://github.com/princewang1994/TextSnake.pytorch.
Args:
text_repr_type (str): The boundary encoding type 'poly' or 'quad'.
min_text_region_confidence (float): The confidence threshold of text
region in TextSnake.
min_center_region_confidence (float): The confidence threshold of text
center region in TextSnake.
min_center_area (int): The minimal text center region area.
disk_overlap_thr (float): The radius overlap threshold for merging
disks.
radius_shrink_ratio (float): The shrink ratio of ordered disks radii.
rescale_fields (list[str], optional): The bbox/polygon field names to
be rescaled. If None, no rescaling will be performed.
"""
def __init__(self,
text_repr_type: str = 'poly',
min_text_region_confidence: float = 0.6,
min_center_region_confidence: float = 0.2,
min_center_area: int = 30,
disk_overlap_thr: float = 0.03,
radius_shrink_ratio: float = 1.03,
rescale_fields: Sequence[str] = ['polygons'],
**kwargs) -> None:
super().__init__(
text_repr_type=text_repr_type,
rescale_fields=rescale_fields,
**kwargs)
assert text_repr_type == 'poly'
self.min_text_region_confidence = min_text_region_confidence
self.min_center_region_confidence = min_center_region_confidence
self.min_center_area = min_center_area
self.disk_overlap_thr = disk_overlap_thr
self.radius_shrink_ratio = radius_shrink_ratio
def get_text_instances(self, pred_results: torch.Tensor,
data_sample: TextDetDataSample
) -> TextDetDataSample:
"""
Args:
pred_results (torch.Tensor): Prediction map with
shape :math:`(C, H, W)`.
data_sample (TextDetDataSample): Datasample of an image.
Returns:
list[list[float]]: The instance boundary and its confidence.
"""
assert pred_results.dim() == 3
data_sample.pred_instances = InstanceData()
data_sample.pred_instances.polygons = []
data_sample.pred_instances.scores = []
pred_results[:2, :, :] = torch.sigmoid(pred_results[:2, :, :])
pred_results = pred_results.detach().cpu().numpy()
pred_text_score = pred_results[0]
pred_text_mask = pred_text_score > self.min_text_region_confidence
pred_center_score = pred_results[1] * pred_text_score
pred_center_mask = \
pred_center_score > self.min_center_region_confidence
pred_sin = pred_results[2]
pred_cos = pred_results[3]
pred_radius = pred_results[4]
mask_sz = pred_text_mask.shape
scale = np.sqrt(1.0 / (pred_sin**2 + pred_cos**2 + 1e-8))
pred_sin = pred_sin * scale
pred_cos = pred_cos * scale
pred_center_mask = fill_hole(pred_center_mask).astype(np.uint8)
center_contours, _ = cv2.findContours(pred_center_mask, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
for contour in center_contours:
if cv2.contourArea(contour) < self.min_center_area:
continue
instance_center_mask = np.zeros(mask_sz, dtype=np.uint8)
cv2.drawContours(instance_center_mask, [contour], -1, 1, -1)
skeleton = skeletonize(instance_center_mask)
skeleton_yx = np.argwhere(skeleton > 0)
y, x = skeleton_yx[:, 0], skeleton_yx[:, 1]
cos = pred_cos[y, x].reshape((-1, 1))
sin = pred_sin[y, x].reshape((-1, 1))
radius = pred_radius[y, x].reshape((-1, 1))
center_line_yx = self._centralize(skeleton_yx, cos, -sin, radius,
instance_center_mask)
y, x = center_line_yx[:, 0], center_line_yx[:, 1]
radius = (pred_radius[y, x] * self.radius_shrink_ratio).reshape(
(-1, 1))
score = pred_center_score[y, x].reshape((-1, 1))
instance_disks = np.hstack(
[np.fliplr(center_line_yx), radius, score])
instance_disks = self._merge_disks(instance_disks,
self.disk_overlap_thr)
instance_mask = np.zeros(mask_sz, dtype=np.uint8)
for x, y, radius, score in instance_disks:
if radius > 1:
cv2.circle(instance_mask, (int(x), int(y)), int(radius), 1,
-1)
contours, _ = cv2.findContours(instance_mask, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
score = np.sum(instance_mask * pred_text_score) / (
np.sum(instance_mask) + 1e-8)
if (len(contours) > 0 and cv2.contourArea(contours[0]) > 0
and contours[0].size > 8):
polygon = contours[0].flatten().tolist()
data_sample.pred_instances.polygons.append(polygon)
data_sample.pred_instances.scores.append(score)
data_sample.pred_instances.scores = torch.FloatTensor(
data_sample.pred_instances.scores)
return data_sample
def split_results(self, pred_results: torch.Tensor) -> List[torch.Tensor]:
"""Split the prediction results into text score and kernel score.
Args:
pred_results (torch.Tensor): The prediction results.
Returns:
List[torch.Tensor]: The text score and kernel score.
"""
pred_results = [pred_result for pred_result in pred_results]
return pred_results
@staticmethod
def _centralize(points_yx: np.ndarray,
normal_cos: torch.Tensor,
normal_sin: torch.Tensor,
radius: torch.Tensor,
contour_mask: np.ndarray,
step_ratio: float = 0.03) -> np.ndarray:
"""Centralize the points.
Args:
points_yx (np.array): The points in yx order.
normal_cos (torch.Tensor): The normal cosine of the points.
normal_sin (torch.Tensor): The normal sine of the points.
radius (torch.Tensor): The radius of the points.
contour_mask (np.array): The contour mask of the points.
step_ratio (float): The step ratio of the centralization.
Defaults to 0.03.
Returns:
np.ndarray: The centralized points.
"""
h, w = contour_mask.shape
top_yx = bot_yx = points_yx
step_flags = np.ones((len(points_yx), 1), dtype=np.bool_)
step = step_ratio * radius * np.hstack([normal_cos, normal_sin])
while np.any(step_flags):
next_yx = np.array(top_yx + step, dtype=np.int32)
next_y, next_x = next_yx[:, 0], next_yx[:, 1]
step_flags = (next_y >= 0) & (next_y < h) & (next_x > 0) & (
next_x < w) & contour_mask[np.clip(next_y, 0, h - 1),
np.clip(next_x, 0, w - 1)]
top_yx = top_yx + step_flags.reshape((-1, 1)) * step
step_flags = np.ones((len(points_yx), 1), dtype=np.bool_)
while np.any(step_flags):
next_yx = np.array(bot_yx - step, dtype=np.int32)
next_y, next_x = next_yx[:, 0], next_yx[:, 1]
step_flags = (next_y >= 0) & (next_y < h) & (next_x > 0) & (
next_x < w) & contour_mask[np.clip(next_y, 0, h - 1),
np.clip(next_x, 0, w - 1)]
bot_yx = bot_yx - step_flags.reshape((-1, 1)) * step
centers = np.array((top_yx + bot_yx) * 0.5, dtype=np.int32)
return centers
@staticmethod
def _merge_disks(disks: np.ndarray, disk_overlap_thr: float) -> np.ndarray:
"""Merging overlapped disks.
Args:
disks (np.ndarray): The predicted disks.
disk_overlap_thr (float): The radius overlap threshold for merging
disks.
Returns:
np.ndarray: The merged disks.
"""
xy = disks[:, 0:2]
radius = disks[:, 2]
scores = disks[:, 3]
order = scores.argsort()[::-1]
merged_disks = []
while order.size > 0:
if order.size == 1:
merged_disks.append(disks[order])
break
i = order[0]
d = norm(xy[i] - xy[order[1:]], axis=1)
ri = radius[i]
r = radius[order[1:]]
d_thr = (ri + r) * disk_overlap_thr
merge_inds = np.where(d <= d_thr)[0] + 1
if merge_inds.size > 0:
merge_order = np.hstack([i, order[merge_inds]])
merged_disks.append(np.mean(disks[merge_order], axis=0))
else:
merged_disks.append(disks[i])
inds = np.where(d > d_thr)[0] + 1
order = order[inds]
merged_disks = np.vstack(merged_disks)
return merged_disks