Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
from mmengine.model import BaseModule | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from mmocr.models.common.dictionary import Dictionary | |
from mmocr.registry import MODELS, TASK_UTILS | |
from mmocr.structures import KIEDataSample | |
class SDMGRHead(BaseModule): | |
"""SDMGR Head. | |
Args: | |
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or | |
the instance of `Dictionary`. | |
num_classes (int): Number of class labels. Defaults to 26. | |
visual_dim (int): Dimension of visual features :math:`E`. Defaults to | |
64. | |
fusion_dim (int): Dimension of fusion layer. Defaults to 1024. | |
node_input (int): Dimension of raw node embedding. Defaults to 32. | |
node_embed (int): Dimension of node embedding. Defaults to 256. | |
edge_input (int): Dimension of raw edge embedding. Defaults to 5. | |
edge_embed (int): Dimension of edge embedding. Defaults to 256. | |
num_gnn (int): Number of GNN layers. Defaults to 2. | |
bidirectional (bool): Whether to use bidirectional RNN to embed nodes. | |
Defaults to False. | |
relation_norm (float): Norm to map value from one range to another.= | |
Defaults to 10. | |
module_loss (dict): Module Loss config. Defaults to | |
``dict(type='SDMGRModuleLoss')``. | |
postprocessor (dict): Postprocessor config. Defaults to | |
``dict(type='SDMGRPostProcessor')``. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
""" | |
def __init__( | |
self, | |
dictionary: Union[Dictionary, Dict], | |
num_classes: int = 26, | |
visual_dim: int = 64, | |
fusion_dim: int = 1024, | |
node_input: int = 32, | |
node_embed: int = 256, | |
edge_input: int = 5, | |
edge_embed: int = 256, | |
num_gnn: int = 2, | |
bidirectional: bool = False, | |
relation_norm: float = 10., | |
module_loss: Dict = dict(type='SDMGRModuleLoss'), | |
postprocessor: Dict = dict(type='SDMGRPostProcessor'), | |
init_cfg: Optional[Union[Dict, List[Dict]]] = dict( | |
type='Normal', override=dict(name='edge_embed'), mean=0, std=0.01) | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
assert isinstance(dictionary, (dict, Dictionary)) | |
if isinstance(dictionary, dict): | |
self.dictionary = TASK_UTILS.build(dictionary) | |
elif isinstance(dictionary, Dictionary): | |
self.dictionary = dictionary | |
self.fusion = FusionBlock([visual_dim, node_embed], node_embed, | |
fusion_dim) | |
self.node_embed = nn.Embedding(self.dictionary.num_classes, node_input, | |
self.dictionary.padding_idx) | |
hidden = node_embed // 2 if bidirectional else node_embed | |
self.rnn = nn.LSTM( | |
input_size=node_input, | |
hidden_size=hidden, | |
num_layers=1, | |
batch_first=True, | |
bidirectional=bidirectional) | |
self.edge_embed = nn.Linear(edge_input, edge_embed) | |
self.gnn_layers = nn.ModuleList( | |
[GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)]) | |
self.node_cls = nn.Linear(node_embed, num_classes) | |
self.edge_cls = nn.Linear(edge_embed, 2) | |
self.module_loss = MODELS.build(module_loss) | |
self.postprocessor = MODELS.build(postprocessor) | |
self.relation_norm = relation_norm | |
def loss(self, inputs: Tensor, data_samples: List[KIEDataSample]) -> Dict: | |
"""Calculate losses from a batch of inputs and data samples. | |
Args: | |
inputs (torch.Tensor): Shape :math:`(N, E)`. | |
data_samples (List[KIEDataSample]): List of data samples. | |
Returns: | |
dict[str, tensor]: A dictionary of loss components. | |
""" | |
preds = self.forward(inputs, data_samples) | |
return self.module_loss(preds, data_samples) | |
def predict(self, inputs: Tensor, | |
data_samples: List[KIEDataSample]) -> List[KIEDataSample]: | |
"""Predict results from a batch of inputs and data samples with post- | |
processing. | |
Args: | |
inputs (torch.Tensor): Shape :math:`(N, E)`. | |
data_samples (List[KIEDataSample]): List of data samples. | |
Returns: | |
List[KIEDataSample]: A list of datasamples of prediction results. | |
Results are stored in ``pred_instances.labels``, | |
``pred_instances.scores``, ``pred_instances.edge_labels`` and | |
``pred_instances.edge_scores``. | |
- labels (Tensor): An integer tensor of shape (N, ) indicating bbox | |
labels for each image. | |
- scores (Tensor): A float tensor of shape (N, ), indicating the | |
confidence scores for node label predictions. | |
- edge_labels (Tensor): An integer tensor of shape (N, N) | |
indicating the connection between nodes. Options are 0, 1. | |
- edge_scores (Tensor): A float tensor of shape (N, ), indicating | |
the confidence scores for edge predictions. | |
""" | |
preds = self.forward(inputs, data_samples) | |
return self.postprocessor(preds, data_samples) | |
def forward(self, inputs: Tensor, | |
data_samples: List[KIEDataSample]) -> Tuple[Tensor, Tensor]: | |
""" | |
Args: | |
inputs (torch.Tensor): Shape :math:`(N, E)`. | |
data_samples (List[KIEDataSample]): List of data samples. | |
Returns: | |
tuple(Tensor, Tensor): | |
- node_cls (Tensor): Raw logits scores for nodes. Shape | |
:math:`(N, C_{l})` where :math:`C_{l}` is number of classes. | |
- edge_cls (Tensor): Raw logits scores for edges. Shape | |
:math:`(N * N, 2)`. | |
""" | |
device = self.node_embed.weight.device | |
node_nums, char_nums, all_nodes = self.convert_texts(data_samples) | |
embed_nodes = self.node_embed(all_nodes.to(device).long()) | |
rnn_nodes, _ = self.rnn(embed_nodes) | |
nodes = rnn_nodes.new_zeros(*rnn_nodes.shape[::2]) | |
all_nums = torch.cat(char_nums).to(device) | |
valid = all_nums > 0 | |
nodes[valid] = rnn_nodes[valid].gather( | |
1, (all_nums[valid] - 1).unsqueeze(-1).unsqueeze(-1).expand( | |
-1, -1, rnn_nodes.size(-1))).squeeze(1) | |
if inputs is not None: | |
nodes = self.fusion([inputs, nodes]) | |
relations = self.compute_relations(data_samples) | |
all_edges = torch.cat( | |
[relation.view(-1, relation.size(-1)) for relation in relations], | |
dim=0) | |
embed_edges = self.edge_embed(all_edges.float()) | |
embed_edges = F.normalize(embed_edges) | |
for gnn_layer in self.gnn_layers: | |
nodes, embed_edges = gnn_layer(nodes, embed_edges, node_nums) | |
node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(embed_edges) | |
return node_cls, edge_cls | |
def convert_texts( | |
self, data_samples: List[KIEDataSample] | |
) -> Tuple[List[Tensor], List[Tensor], Tensor]: | |
"""Extract texts in datasamples and pack them into a batch. | |
Args: | |
data_samples (List[KIEDataSample]): List of data samples. | |
Returns: | |
tuple(List[int], List[Tensor], Tensor): | |
- node_nums (List[int]): A list of node numbers for each | |
sample. | |
- char_nums (List[Tensor]): A list of character numbers for each | |
sample. | |
- nodes (Tensor): A tensor of shape :math:`(N, C)` where | |
:math:`C` is the maximum number of characters in a sample. | |
""" | |
node_nums, char_nums = [], [] | |
max_len = -1 | |
text_idxs = [] | |
for data_sample in data_samples: | |
node_nums.append(len(data_sample.gt_instances.texts)) | |
for text in data_sample.gt_instances.texts: | |
text_idxs.append(self.dictionary.str2idx(text)) | |
max_len = max(max_len, len(text)) | |
nodes = torch.zeros((sum(node_nums), max_len), | |
dtype=torch.long) + self.dictionary.padding_idx | |
for i, text_idx in enumerate(text_idxs): | |
nodes[i, :len(text_idx)] = torch.LongTensor(text_idx) | |
char_nums = (nodes != self.dictionary.padding_idx).sum(-1).split( | |
node_nums, dim=0) | |
return node_nums, char_nums, nodes | |
def compute_relations(self, data_samples: List[KIEDataSample]) -> Tensor: | |
"""Compute the relations between every two boxes for each datasample, | |
then return the concatenated relations.""" | |
relations = [] | |
for data_sample in data_samples: | |
bboxes = data_sample.gt_instances.bboxes | |
x1, y1 = bboxes[:, 0:1], bboxes[:, 1:2] | |
x2, y2 = bboxes[:, 2:3], bboxes[:, 3:4] | |
w, h = torch.clamp( | |
x2 - x1 + 1, min=1), torch.clamp( | |
y2 - y1 + 1, min=1) | |
dx = (x1.t() - x1) / self.relation_norm | |
dy = (y1.t() - y1) / self.relation_norm | |
xhh, xwh = h.T / h, w.T / h | |
whs = w / h + torch.zeros_like(xhh) | |
relation = torch.stack([dx, dy, whs, xhh, xwh], -1).float() | |
relations.append(relation) | |
return relations | |
class GNNLayer(nn.Module): | |
"""GNN layer for SDMGR. | |
Args: | |
node_dim (int): Dimension of node embedding. Defaults to 256. | |
edge_dim (int): Dimension of edge embedding. Defaults to 256. | |
""" | |
def __init__(self, node_dim: int = 256, edge_dim: int = 256) -> None: | |
super().__init__() | |
self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim) | |
self.coef_fc = nn.Linear(node_dim, 1) | |
self.out_fc = nn.Linear(node_dim, node_dim) | |
self.relu = nn.ReLU() | |
def forward(self, nodes: Tensor, edges: Tensor, | |
nums: List[int]) -> Tuple[Tensor, Tensor]: | |
"""Forward function. | |
Args: | |
nodes (Tensor): Concatenated node embeddings. | |
edges (Tensor): Concatenated edge embeddings. | |
nums (List[int]): List of number of nodes in each batch. | |
Returns: | |
tuple(Tensor, Tensor): | |
- nodes (Tensor): New node embeddings. | |
- edges (Tensor): New edge embeddings. | |
""" | |
start, cat_nodes = 0, [] | |
for num in nums: | |
sample_nodes = nodes[start:start + num] | |
cat_nodes.append( | |
torch.cat([ | |
sample_nodes.unsqueeze(1).expand(-1, num, -1), | |
sample_nodes.unsqueeze(0).expand(num, -1, -1) | |
], -1).view(num**2, -1)) | |
start += num | |
cat_nodes = torch.cat([torch.cat(cat_nodes), edges], -1) | |
cat_nodes = self.relu(self.in_fc(cat_nodes)) | |
coefs = self.coef_fc(cat_nodes) | |
start, residuals = 0, [] | |
for num in nums: | |
residual = F.softmax( | |
-torch.eye(num).to(coefs.device).unsqueeze(-1) * 1e9 + | |
coefs[start:start + num**2].view(num, num, -1), 1) | |
residuals.append( | |
(residual * | |
cat_nodes[start:start + num**2].view(num, num, -1)).sum(1)) | |
start += num**2 | |
nodes += self.relu(self.out_fc(torch.cat(residuals))) | |
return nodes, cat_nodes | |
class FusionBlock(nn.Module): | |
"""Fusion block of SDMGR. | |
Args: | |
input_dims (tuple(int, int)): Visual dimension and node embedding | |
dimension. | |
output_dim (int): Output dimension. | |
mm_dim (int): Model dimension. Defaults to 1600. | |
chunks (int): Number of chunks. Defaults to 20. | |
rank (int): Rank number. Defaults to 15. | |
shared (bool): Whether to share the project layer between visual and | |
node embedding features. Defaults to False. | |
dropout_input (float): Dropout rate after the first projection layer. | |
Defaults to 0. | |
dropout_pre_lin (float): Dropout rate before the final project layer. | |
Defaults to 0. | |
dropout_pre_lin (float): Dropout rate after the final project layer. | |
Defaults to 0. | |
pos_norm (str): The normalization position. Options are 'before_cat' | |
and 'after_cat'. Defaults to 'before_cat'. | |
""" | |
def __init__(self, | |
input_dims: Tuple[int, int], | |
output_dim: int, | |
mm_dim: int = 1600, | |
chunks: int = 20, | |
rank: int = 15, | |
shared: bool = False, | |
dropout_input: float = 0., | |
dropout_pre_lin: float = 0., | |
dropout_output: float = 0., | |
pos_norm: str = 'before_cat') -> None: | |
super().__init__() | |
self.rank = rank | |
self.dropout_input = dropout_input | |
self.dropout_pre_lin = dropout_pre_lin | |
self.dropout_output = dropout_output | |
assert (pos_norm in ['before_cat', 'after_cat']) | |
self.pos_norm = pos_norm | |
# Modules | |
self.linear0 = nn.Linear(input_dims[0], mm_dim) | |
self.linear1 = ( | |
self.linear0 if shared else nn.Linear(input_dims[1], mm_dim)) | |
self.merge_linears0 = nn.ModuleList() | |
self.merge_linears1 = nn.ModuleList() | |
self.chunks = self.chunk_sizes(mm_dim, chunks) | |
for size in self.chunks: | |
ml0 = nn.Linear(size, size * rank) | |
self.merge_linears0.append(ml0) | |
ml1 = ml0 if shared else nn.Linear(size, size * rank) | |
self.merge_linears1.append(ml1) | |
self.linear_out = nn.Linear(mm_dim, output_dim) | |
def forward(self, x: Tensor) -> Tensor: | |
"""Forward function.""" | |
x0 = self.linear0(x[0]) | |
x1 = self.linear1(x[1]) | |
bs = x1.size(0) | |
if self.dropout_input > 0: | |
x0 = F.dropout(x0, p=self.dropout_input, training=self.training) | |
x1 = F.dropout(x1, p=self.dropout_input, training=self.training) | |
x0_chunks = torch.split(x0, self.chunks, -1) | |
x1_chunks = torch.split(x1, self.chunks, -1) | |
zs = [] | |
for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, | |
self.merge_linears0, | |
self.merge_linears1): | |
m = m0(x0_c) * m1(x1_c) # bs x split_size*rank | |
m = m.view(bs, self.rank, -1) | |
z = torch.sum(m, 1) | |
if self.pos_norm == 'before_cat': | |
z = torch.sqrt(F.relu(z)) - torch.sqrt(F.relu(-z)) | |
z = F.normalize(z) | |
zs.append(z) | |
z = torch.cat(zs, 1) | |
if self.pos_norm == 'after_cat': | |
z = torch.sqrt(F.relu(z)) - torch.sqrt(F.relu(-z)) | |
z = F.normalize(z) | |
if self.dropout_pre_lin > 0: | |
z = F.dropout(z, p=self.dropout_pre_lin, training=self.training) | |
z = self.linear_out(z) | |
if self.dropout_output > 0: | |
z = F.dropout(z, p=self.dropout_output, training=self.training) | |
return z | |
def chunk_sizes(dim: int, chunks: int) -> List[int]: | |
"""Compute chunk sizes.""" | |
split_size = (dim + chunks - 1) // chunks | |
sizes_list = [split_size] * chunks | |
sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim) | |
return sizes_list | |