Mountchicken's picture
Upload 704 files
9bf4bd7
raw
history blame
8.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, List, Optional, Sequence, Tuple
import torch
from mmdet.structures.bbox import bbox2roi
from mmengine.model import BaseModel
from torch import nn
from mmocr.registry import MODELS, TASK_UTILS
from mmocr.structures import KIEDataSample
@MODELS.register_module()
class SDMGR(BaseModel):
"""The implementation of the paper: Spatial Dual-Modality Graph Reasoning
for Key Information Extraction. https://arxiv.org/abs/2103.14470.
Args:
backbone (dict, optional): Config of backbone. If None, None will be
passed to kie_head during training and testing. Defaults to None.
roi_extractor (dict, optional): Config of roi extractor. Only
applicable when backbone is not None. Defaults to None.
neck (dict, optional): Config of neck. Defaults to None.
kie_head (dict): Config of KIE head. Defaults to None.
dictionary (dict, optional): Config of dictionary. Defaults to None.
data_preprocessor (dict or ConfigDict, optional): The pre-process
config of :class:`BaseDataPreprocessor`. it usually includes,
``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. It has
to be None when working in non-visual mode. Defaults to None.
init_cfg (dict or list[dict], optional): Initialization configs.
Defaults to None.
"""
def __init__(self,
backbone: Optional[Dict] = None,
roi_extractor: Optional[Dict] = None,
neck: Optional[Dict] = None,
kie_head: Dict = None,
dictionary: Optional[Dict] = None,
data_preprocessor: Optional[Dict] = None,
init_cfg: Optional[Dict] = None) -> None:
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
if dictionary is not None:
self.dictionary = TASK_UTILS.build(dictionary)
if kie_head.get('dictionary', None) is None:
kie_head.update(dictionary=self.dictionary)
else:
warnings.warn(f"Using dictionary {kie_head['dictionary']} "
"in kie_head's config.")
if backbone is not None:
self.backbone = MODELS.build(backbone)
self.extractor = MODELS.build({
**roi_extractor, 'out_channels':
self.backbone.base_channels
})
self.maxpool = nn.MaxPool2d(
roi_extractor['roi_layer']['output_size'])
if neck is not None:
self.neck = MODELS.build(neck)
self.kie_head = MODELS.build(kie_head)
def extract_feat(self, img: torch.Tensor,
gt_bboxes: List[torch.Tensor]) -> torch.Tensor:
"""Extract features from images if self.backbone is not None. It
returns None otherwise.
Args:
img (torch.Tensor): The input image with shape (N, C, H, W).
gt_bboxes (list[torch.Tensor)): A list of ground truth bounding
boxes, each of shape :math:`(N_i, 4)`.
Returns:
torch.Tensor: The extracted features with shape (N, E).
"""
if not hasattr(self, 'backbone'):
return None
x = self.backbone(img)
if hasattr(self, 'neck'):
x = self.neck(x)
x = x[-1]
feats = self.maxpool(self.extractor([x], bbox2roi(gt_bboxes)))
return feats.view(feats.size(0), -1)
def forward(self,
inputs: torch.Tensor,
data_samples: Sequence[KIEDataSample] = None,
mode: str = 'tensor',
**kwargs) -> torch.Tensor:
"""The unified entry for a forward process in both training and test.
The method should accept three modes: "tensor", "predict" and "loss":
- "tensor": Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- "predict": Forward and return the predictions, which are fully
processed to a list of :obj:`DetDataSample`.
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (list[:obj:`DetDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to 'tensor'.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of :obj:`DetDataSample`.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(inputs, data_samples, **kwargs)
elif mode == 'predict':
return self.predict(inputs, data_samples, **kwargs)
elif mode == 'tensor':
return self._forward(inputs, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode')
def loss(self, inputs: torch.Tensor, data_samples: Sequence[KIEDataSample],
**kwargs) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (torch.Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
data_samples (list[KIEDataSample]): A list of N datasamples,
containing meta information and gold annotations for each of
the images.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
x = self.extract_feat(
inputs,
[data_sample.gt_instances.bboxes for data_sample in data_samples])
return self.kie_head.loss(x, data_samples)
def predict(self, inputs: torch.Tensor,
data_samples: Sequence[KIEDataSample],
**kwargs) -> List[KIEDataSample]:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (torch.Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
data_samples (list[KIEDataSample]): A list of N datasamples,
containing meta information and gold annotations for each of
the images.
Returns:
List[KIEDataSample]: A list of datasamples of prediction results.
Results are stored in ``pred_instances.labels`` and
``pred_instances.edge_labels``.
"""
x = self.extract_feat(
inputs,
[data_sample.gt_instances.bboxes for data_sample in data_samples])
return self.kie_head.predict(x, data_samples)
def _forward(self, inputs: torch.Tensor,
data_samples: Sequence[KIEDataSample],
**kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get the raw tensor outputs from backbone and head without any post-
processing.
Args:
inputs (torch.Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
data_samples (list[KIEDataSample]): A list of N datasamples,
containing meta information and gold annotations for each of
the images.
Returns:
tuple(torch.Tensor, torch.Tensor): Tensor output from head.
- node_cls (torch.Tensor): Node classification output.
- edge_cls (torch.Tensor): Edge classification output.
"""
x = self.extract_feat(
inputs,
[data_sample.gt_instances.bboxes for data_sample in data_samples])
return self.kie_head(x, data_samples)