Spaces:
Sleeping
Sleeping
dictionary = dict( | |
type='Dictionary', | |
dict_file='{{ fileDirname }}/../../../dicts/lower_english_digits.txt', | |
with_padding=True, | |
with_unknown=True, | |
) | |
model = dict( | |
type='SVTR', | |
preprocessor=dict( | |
type='STN', | |
in_channels=3, | |
resized_image_size=(32, 64), | |
output_image_size=(32, 100), | |
num_control_points=20, | |
margins=[0.05, 0.05]), | |
encoder=dict( | |
type='SVTREncoder', | |
img_size=[32, 100], | |
in_channels=3, | |
out_channels=192, | |
embed_dims=[64, 128, 256], | |
depth=[3, 6, 3], | |
num_heads=[2, 4, 8], | |
mixer_types=['Local'] * 6 + ['Global'] * 6, | |
window_size=[[7, 11], [7, 11], [7, 11]], | |
merging_types='Conv', | |
prenorm=False, | |
max_seq_len=25), | |
decoder=dict( | |
type='SVTRDecoder', | |
in_channels=192, | |
module_loss=dict( | |
type='CTCModuleLoss', letter_case='lower', zero_infinity=True), | |
postprocessor=dict(type='CTCPostProcessor'), | |
dictionary=dictionary), | |
data_preprocessor=dict( | |
type='TextRecogDataPreprocessor', mean=[127.5], std=[127.5])) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', ignore_empty=True, min_size=5), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict(type='TextRecogGeneralAug', ), | |
], | |
), | |
dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict(type='CropHeight', ), | |
], | |
), | |
dict( | |
type='ConditionApply', | |
condition='min(results["img_shape"])>10', | |
true_transforms=dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict( | |
type='TorchVisionWrapper', | |
op='GaussianBlur', | |
kernel_size=5, | |
sigma=1, | |
), | |
], | |
)), | |
dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict( | |
type='TorchVisionWrapper', | |
op='ColorJitter', | |
brightness=0.5, | |
saturation=0.5, | |
contrast=0.5, | |
hue=0.1), | |
]), | |
dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict(type='ImageContentJitter', ), | |
], | |
), | |
dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='AdditiveGaussianNoise', scale=0.1**0.5)]), | |
], | |
), | |
dict( | |
type='RandomApply', | |
prob=0.4, | |
transforms=[ | |
dict(type='ReversePixels', ), | |
], | |
), | |
dict(type='Resize', scale=(256, 64)), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(256, 64)), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
tta_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='TestTimeAug', | |
transforms=[[ | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=0, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]"), | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=1, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]"), | |
dict( | |
type='ConditionApply', | |
true_transforms=[ | |
dict( | |
type='ImgAugWrapper', | |
args=[dict(cls='Rot90', k=3, keep_size=False)]) | |
], | |
condition="results['img_shape'][1]<results['img_shape'][0]"), | |
], [dict(type='Resize', scale=(256, 64))], | |
[dict(type='LoadOCRAnnotations', with_text=True)], | |
[ | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'valid_ratio')) | |
]]) | |
] | |