MAERec-Gradio / app.py
Mountchicken's picture
Update app.py
c0ba2f4
raw
history blame
5.44 kB
# Install dependencies
import os
os.system('python -m mim install mmocr')
os.system('pip install gradio_client==0.2.7')
os.system('python -m mim install "mmcv==2.0.0rc4"')
os.system('python -m mim install mmengine==0.7.1')
os.system('python -m mim install "mmdet==3.0.0rc5"')
os.system('pip install -v -e .')
import cv2
import argparse
import gradio as gr
import numpy as np
# MMOCR
from mmocr.apis.inferencers import MMOCRInferencer
def arg_parse():
parser = argparse.ArgumentParser(description='MMOCR demo for gradio app')
parser.add_argument(
'--rec_config',
type=str,
default='configs/textrecog/maerec/maerec_b_union14m.py',
help='The recognition config file.')
parser.add_argument(
'--rec_weight',
type=str,
default=
'maerec_b_union14m.pth',
help='The recognition weight file.')
parser.add_argument(
'--det_config',
type=str,
default=
'configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py', # noqa,
help='The detection config file.')
parser.add_argument(
'--det_weight',
type=str,
default='dbnetpp.pth',
help='The detection weight file.')
parser.add_argument(
'--device',
type=str,
default='cpu',
help='The device used for inference.')
args = parser.parse_args()
return args
def run_mmocr(img: np.ndarray, use_detector: bool = True):
"""Run MMOCR and SAM
Args:
img (np.ndarray): Input image
use_detector (bool, optional): Whether to use detector. Defaults to
True.
"""
if use_detector:
mode = 'det_rec'
else:
mode = 'rec'
# Build MMOCR
mmocr_inferencer.mode = mode
result = mmocr_inferencer(img, return_vis=True)
visualization = result['visualization'][0]
result = result['predictions'][0]
if mode == 'det_rec':
rec_texts = result['rec_texts']
det_polygons = result['det_polygons']
det_results = []
for rec_text, det_polygon in zip(rec_texts, det_polygons):
det_polygon = np.array(det_polygon).astype(np.int32).tolist()
det_results.append(f'{rec_text}: {det_polygon}')
out_results = '\n'.join(det_results)
visualization = cv2.cvtColor(
np.array(visualization), cv2.COLOR_RGB2BGR)
else:
rec_text = result['rec_texts'][0]
rec_score = result['rec_scores'][0]
out_results = f'pred: {rec_text} \n score: {rec_score:.2f}'
visualization = None
return visualization, out_results
if __name__ == '__main__':
args = arg_parse()
mmocr_inferencer = MMOCRInferencer(
args.det_config,
args.det_weight,
args.rec_config,
args.rec_weight,
device=args.device)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
MAERec: A MAE-pretrained Scene Text Recognizer
</h1>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://github.com/Mountchicken/Union14M" style="color:green;">Code</a>]
</h3>
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
MAERec is a scene text recognition model composed of a ViT backbone and a Transformer decoder in auto-regressive
style. It shows an outstanding performance in scene text recognition, especially when pre-trained on the
Union14M-U through MAE.
</h2>
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
In this demo, we combine MAERec with DBNet++ to build an
end-to-end scene text recognition model.
</h2>
</div>
""")
gr.Image('github/maerec.png')
with gr.Column(scale=1):
input_image = gr.Image(label='Input Image')
output_image = gr.Image(label='Output Image')
use_detector = gr.Checkbox(
label=
'Use Scene Text Detector or Not (Disabled for Recognition Only)',
default=True)
det_results = gr.Textbox(label='Detection Results')
mmocr = gr.Button('Run MMOCR')
gr.Markdown("## Image Examples")
with gr.Row():
gr.Examples(
examples=[
'github/author.jpg', 'github/gradio1.jpeg',
'github/Art_Curve_178.jpg', 'github/cute_3.jpg',
'github/cute_168.jpg', 'github/hiercurve_2229.jpg',
'github/ic15_52.jpg', 'github/ic15_698.jpg',
'github/Art_Curve_352.jpg'
],
inputs=input_image,
)
mmocr.click(
fn=run_mmocr,
inputs=[input_image, use_detector],
outputs=[output_image, det_results])
demo.launch(debug=True)