Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import argparse | |
| import math | |
| import os | |
| import os.path as osp | |
| import mmcv | |
| import mmengine | |
| from mmocr.utils import dump_ocr_data | |
| def collect_files(img_dir, gt_dir): | |
| """Collect all images and their corresponding groundtruth files. | |
| Args: | |
| img_dir (str): The image directory | |
| gt_dir (str): The groundtruth directory | |
| Returns: | |
| files (list): The list of tuples (img_file, groundtruth_file) | |
| """ | |
| assert isinstance(img_dir, str) | |
| assert img_dir | |
| assert isinstance(gt_dir, str) | |
| assert gt_dir | |
| ann_list, imgs_list = [], [] | |
| for gt_file in os.listdir(gt_dir): | |
| ann_list.append(osp.join(gt_dir, gt_file)) | |
| imgs_list.append(osp.join(img_dir, gt_file.replace('.json', '.png'))) | |
| files = list(zip(sorted(imgs_list), sorted(ann_list))) | |
| assert len(files), f'No images found in {img_dir}' | |
| print(f'Loaded {len(files)} images from {img_dir}') | |
| return files | |
| def collect_annotations(files, nproc=1): | |
| """Collect the annotation information. | |
| Args: | |
| files (list): The list of tuples (image_file, groundtruth_file) | |
| nproc (int): The number of process to collect annotations | |
| Returns: | |
| images (list): The list of image information dicts | |
| """ | |
| assert isinstance(files, list) | |
| assert isinstance(nproc, int) | |
| if nproc > 1: | |
| images = mmengine.track_parallel_progress( | |
| load_img_info, files, nproc=nproc) | |
| else: | |
| images = mmengine.track_progress(load_img_info, files) | |
| return images | |
| def load_img_info(files): | |
| """Load the information of one image. | |
| Args: | |
| files (tuple): The tuple of (img_file, groundtruth_file) | |
| Returns: | |
| img_info (dict): The dict of the img and annotation information | |
| """ | |
| assert isinstance(files, tuple) | |
| img_file, gt_file = files | |
| assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( | |
| '.')[0] | |
| # read imgs while ignoring orientations | |
| img = mmcv.imread(img_file, 'unchanged') | |
| img_info = dict( | |
| file_name=osp.join(osp.basename(img_file)), | |
| height=img.shape[0], | |
| width=img.shape[1], | |
| segm_file=osp.join(osp.basename(gt_file))) | |
| if osp.splitext(gt_file)[1] == '.json': | |
| img_info = load_json_info(gt_file, img_info) | |
| else: | |
| raise NotImplementedError | |
| return img_info | |
| def load_json_info(gt_file, img_info): | |
| """Collect the annotation information. | |
| Args: | |
| gt_file (str): The path to ground-truth | |
| img_info (dict): The dict of the img and annotation information | |
| Returns: | |
| img_info (dict): The dict of the img and annotation information | |
| """ | |
| annotation = mmengine.load(gt_file) | |
| anno_info = [] | |
| for form in annotation['form']: | |
| for ann in form['words']: | |
| iscrowd = 1 if len(ann['text']) == 0 else 0 | |
| x1, y1, x2, y2 = ann['box'] | |
| x = max(0, min(math.floor(x1), math.floor(x2))) | |
| y = max(0, min(math.floor(y1), math.floor(y2))) | |
| w, h = math.ceil(abs(x2 - x1)), math.ceil(abs(y2 - y1)) | |
| bbox = [x, y, w, h] | |
| segmentation = [x, y, x + w, y, x + w, y + h, x, y + h] | |
| anno = dict( | |
| iscrowd=iscrowd, | |
| category_id=1, | |
| bbox=bbox, | |
| area=w * h, | |
| segmentation=[segmentation]) | |
| anno_info.append(anno) | |
| img_info.update(anno_info=anno_info) | |
| return img_info | |
| def parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description='Generate training and test set of FUNSD ') | |
| parser.add_argument('root_path', help='Root dir path of FUNSD') | |
| parser.add_argument( | |
| '--nproc', default=1, type=int, help='Number of process') | |
| args = parser.parse_args() | |
| return args | |
| def main(): | |
| args = parse_args() | |
| root_path = args.root_path | |
| for split in ['training', 'test']: | |
| print(f'Processing {split} set...') | |
| with mmengine.Timer( | |
| print_tmpl='It takes {}s to convert FUNSD annotation'): | |
| files = collect_files( | |
| osp.join(root_path, 'imgs'), | |
| osp.join(root_path, 'annotations', split)) | |
| image_infos = collect_annotations(files, nproc=args.nproc) | |
| dump_ocr_data(image_infos, | |
| osp.join(root_path, 'instances_' + split + '.json'), | |
| 'textdet') | |
| if __name__ == '__main__': | |
| main() | |