Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
import cv2 | |
import numpy as np | |
from mmengine.utils import is_seq_of | |
from shapely.geometry import LineString, Point | |
from .bbox_utils import bbox_jitter | |
from .polygon_utils import sort_vertex | |
def warp_img(src_img, | |
box, | |
jitter=False, | |
jitter_ratio_x=0.5, | |
jitter_ratio_y=0.1): | |
"""Crop box area from image using opencv warpPerspective. | |
Args: | |
src_img (np.array): Image before cropping. | |
box (list[float | int]): Coordinates of quadrangle. | |
jitter (bool): Whether to jitter the box. | |
jitter_ratio_x (float): Horizontal jitter ratio relative to the height. | |
jitter_ratio_y (float): Vertical jitter ratio relative to the height. | |
Returns: | |
np.array: The warped image. | |
""" | |
assert is_seq_of(box, (float, int)) | |
assert len(box) == 8 | |
h, w = src_img.shape[:2] | |
points_x = [min(max(x, 0), w) for x in box[0:8:2]] | |
points_y = [min(max(y, 0), h) for y in box[1:9:2]] | |
points_x, points_y = sort_vertex(points_x, points_y) | |
if jitter: | |
bbox_jitter( | |
points_x, | |
points_y, | |
jitter_ratio_x=jitter_ratio_x, | |
jitter_ratio_y=jitter_ratio_y) | |
points = [Point(points_x[i], points_y[i]) for i in range(4)] | |
edges = [ | |
LineString([points[i], points[i + 1 if i < 3 else 0]]) | |
for i in range(4) | |
] | |
pts1 = np.float32([[points[i].x, points[i].y] for i in range(4)]) | |
box_width = max(edges[0].length, edges[2].length) | |
box_height = max(edges[1].length, edges[3].length) | |
pts2 = np.float32([[0, 0], [box_width, 0], [box_width, box_height], | |
[0, box_height]]) | |
M = cv2.getPerspectiveTransform(pts1, pts2) | |
dst_img = cv2.warpPerspective(src_img, M, | |
(int(box_width), int(box_height))) | |
return dst_img | |
def crop_img(src_img, box, long_edge_pad_ratio=0.4, short_edge_pad_ratio=0.2): | |
"""Crop text region given the bounding box which might be slightly padded. | |
The bounding box is assumed to be a quadrangle and tightly bound the text | |
region. | |
Args: | |
src_img (np.array): The original image. | |
box (list[float | int]): Points of quadrangle. | |
long_edge_pad_ratio (float): The ratio of padding to the long edge. The | |
padding will be the length of the short edge * long_edge_pad_ratio. | |
Defaults to 0.4. | |
short_edge_pad_ratio (float): The ratio of padding to the short edge. | |
The padding will be the length of the long edge * | |
short_edge_pad_ratio. Defaults to 0.2. | |
Returns: | |
np.array: The cropped image. | |
""" | |
assert is_seq_of(box, (float, int)) | |
assert len(box) == 8 | |
assert 0. <= long_edge_pad_ratio < 1.0 | |
assert 0. <= short_edge_pad_ratio < 1.0 | |
h, w = src_img.shape[:2] | |
points_x = np.clip(np.array(box[0::2]), 0, w) | |
points_y = np.clip(np.array(box[1::2]), 0, h) | |
box_width = np.max(points_x) - np.min(points_x) | |
box_height = np.max(points_y) - np.min(points_y) | |
shorter_size = min(box_height, box_width) | |
if box_height < box_width: | |
horizontal_pad = long_edge_pad_ratio * shorter_size | |
vertical_pad = short_edge_pad_ratio * shorter_size | |
else: | |
horizontal_pad = short_edge_pad_ratio * shorter_size | |
vertical_pad = long_edge_pad_ratio * shorter_size | |
left = np.clip(int(np.min(points_x) - horizontal_pad), 0, w) | |
top = np.clip(int(np.min(points_y) - vertical_pad), 0, h) | |
right = np.clip(int(np.max(points_x) + horizontal_pad), 0, w) | |
bottom = np.clip(int(np.max(points_y) + vertical_pad), 0, h) | |
dst_img = src_img[top:bottom, left:right] | |
return dst_img | |