Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple | |
import numpy as np | |
from shapely.geometry import LineString, Point | |
from mmocr.utils.check_argument import is_type_list | |
from mmocr.utils.point_utils import point_distance, points_center | |
from mmocr.utils.typing_utils import ArrayLike | |
def rescale_bbox(bbox: np.ndarray, | |
scale_factor: Tuple[int, int], | |
mode: str = 'mul') -> np.ndarray: | |
"""Rescale a bounding box according to scale_factor. | |
The behavior is different depending on the mode. When mode is 'mul', the | |
coordinates will be multiplied by scale_factor, which is usually used in | |
preprocessing transforms such as :func:`Resize`. | |
The coordinates will be divided by scale_factor if mode is 'div'. It can be | |
used in postprocessors to recover the bbox in the original image size. | |
Args: | |
bbox (ndarray): A bounding box [x1, y1, x2, y2]. | |
scale_factor (tuple(int, int)): (w_scale, h_scale). | |
model (str): Rescale mode. Can be 'mul' or 'div'. Defaults to 'mul'. | |
Returns: | |
np.ndarray: Rescaled bbox. | |
""" | |
assert mode in ['mul', 'div'] | |
bbox = np.array(bbox, dtype=np.float32) | |
bbox_shape = bbox.shape | |
reshape_bbox = bbox.reshape(-1, 2) | |
scale_factor = np.array(scale_factor, dtype=float) | |
if mode == 'div': | |
scale_factor = 1 / scale_factor | |
bbox = (reshape_bbox * scale_factor[None]).reshape(bbox_shape) | |
return bbox | |
def rescale_bboxes(bboxes: np.ndarray, | |
scale_factor: Tuple[int, int], | |
mode: str = 'mul') -> np.ndarray: | |
"""Rescale bboxes according to scale_factor. | |
The behavior is different depending on the mode. When mode is 'mul', the | |
coordinates will be multiplied by scale_factor, which is usually used in | |
preprocessing transforms such as :func:`Resize`. | |
The coordinates will be divided by scale_factor if mode is 'div'. It can be | |
used in postprocessors to recover the bboxes in the original | |
image size. | |
Args: | |
bboxes (np.ndarray]): Bounding bboxes in shape (N, 4) | |
scale_factor (tuple(int, int)): (w_scale, h_scale). | |
model (str): Rescale mode. Can be 'mul' or 'div'. Defaults to 'mul'. | |
Returns: | |
list[np.ndarray]: Rescaled bboxes. | |
""" | |
bboxes = rescale_bbox(bboxes, scale_factor, mode) | |
return bboxes | |
def bbox2poly(bbox: ArrayLike, mode: str = 'xyxy') -> np.array: | |
"""Converting a bounding box to a polygon. | |
Args: | |
bbox (ArrayLike): A bbox. In any form can be accessed by 1-D indices. | |
E.g. list[float], np.ndarray, or torch.Tensor. bbox is written in | |
[x1, y1, x2, y2]. | |
mode (str): Specify the format of bbox. Can be 'xyxy' or 'xywh'. | |
Defaults to 'xyxy'. | |
Returns: | |
np.array: The converted polygon [x1, y1, x2, y1, x2, y2, x1, y2]. | |
""" | |
assert len(bbox) == 4 | |
if mode == 'xyxy': | |
x1, y1, x2, y2 = bbox | |
poly = np.array([x1, y1, x2, y1, x2, y2, x1, y2]) | |
elif mode == 'xywh': | |
x, y, w, h = bbox | |
poly = np.array([x, y, x + w, y, x + w, y + h, x, y + h]) | |
else: | |
raise NotImplementedError('Not supported mode.') | |
return poly | |
def is_on_same_line(box_a, box_b, min_y_overlap_ratio=0.8): | |
# TODO Check if it should be deleted after ocr.py refactored | |
"""Check if two boxes are on the same line by their y-axis coordinates. | |
Two boxes are on the same line if they overlap vertically, and the length | |
of the overlapping line segment is greater than min_y_overlap_ratio * the | |
height of either of the boxes. | |
Args: | |
box_a (list), box_b (list): Two bounding boxes to be checked | |
min_y_overlap_ratio (float): The minimum vertical overlapping ratio | |
allowed for boxes in the same line | |
Returns: | |
The bool flag indicating if they are on the same line | |
""" | |
a_y_min = np.min(box_a[1::2]) | |
b_y_min = np.min(box_b[1::2]) | |
a_y_max = np.max(box_a[1::2]) | |
b_y_max = np.max(box_b[1::2]) | |
# Make sure that box a is always the box above another | |
if a_y_min > b_y_min: | |
a_y_min, b_y_min = b_y_min, a_y_min | |
a_y_max, b_y_max = b_y_max, a_y_max | |
if b_y_min <= a_y_max: | |
if min_y_overlap_ratio is not None: | |
sorted_y = sorted([b_y_min, b_y_max, a_y_max]) | |
overlap = sorted_y[1] - sorted_y[0] | |
min_a_overlap = (a_y_max - a_y_min) * min_y_overlap_ratio | |
min_b_overlap = (b_y_max - b_y_min) * min_y_overlap_ratio | |
return overlap >= min_a_overlap or \ | |
overlap >= min_b_overlap | |
else: | |
return True | |
return False | |
def stitch_boxes_into_lines(boxes, max_x_dist=10, min_y_overlap_ratio=0.8): | |
# TODO Check if it should be deleted after ocr.py refactored | |
"""Stitch fragmented boxes of words into lines. | |
Note: part of its logic is inspired by @Johndirr | |
(https://github.com/faustomorales/keras-ocr/issues/22) | |
Args: | |
boxes (list): List of ocr results to be stitched | |
max_x_dist (int): The maximum horizontal distance between the closest | |
edges of neighboring boxes in the same line | |
min_y_overlap_ratio (float): The minimum vertical overlapping ratio | |
allowed for any pairs of neighboring boxes in the same line | |
Returns: | |
merged_boxes(list[dict]): List of merged boxes and texts | |
""" | |
if len(boxes) <= 1: | |
return boxes | |
merged_boxes = [] | |
# sort groups based on the x_min coordinate of boxes | |
x_sorted_boxes = sorted(boxes, key=lambda x: np.min(x['box'][::2])) | |
# store indexes of boxes which are already parts of other lines | |
skip_idxs = set() | |
i = 0 | |
# locate lines of boxes starting from the leftmost one | |
for i in range(len(x_sorted_boxes)): | |
if i in skip_idxs: | |
continue | |
# the rightmost box in the current line | |
rightmost_box_idx = i | |
line = [rightmost_box_idx] | |
for j in range(i + 1, len(x_sorted_boxes)): | |
if j in skip_idxs: | |
continue | |
if is_on_same_line(x_sorted_boxes[rightmost_box_idx]['box'], | |
x_sorted_boxes[j]['box'], min_y_overlap_ratio): | |
line.append(j) | |
skip_idxs.add(j) | |
rightmost_box_idx = j | |
# split line into lines if the distance between two neighboring | |
# sub-lines' is greater than max_x_dist | |
lines = [] | |
line_idx = 0 | |
lines.append([line[0]]) | |
rightmost = np.max(x_sorted_boxes[line[0]]['box'][::2]) | |
for k in range(1, len(line)): | |
curr_box = x_sorted_boxes[line[k]] | |
dist = np.min(curr_box['box'][::2]) - rightmost | |
if dist > max_x_dist: | |
line_idx += 1 | |
lines.append([]) | |
lines[line_idx].append(line[k]) | |
rightmost = max(rightmost, np.max(curr_box['box'][::2])) | |
# Get merged boxes | |
for box_group in lines: | |
merged_box = {} | |
merged_box['text'] = ' '.join( | |
[x_sorted_boxes[idx]['text'] for idx in box_group]) | |
x_min, y_min = float('inf'), float('inf') | |
x_max, y_max = float('-inf'), float('-inf') | |
for idx in box_group: | |
x_max = max(np.max(x_sorted_boxes[idx]['box'][::2]), x_max) | |
x_min = min(np.min(x_sorted_boxes[idx]['box'][::2]), x_min) | |
y_max = max(np.max(x_sorted_boxes[idx]['box'][1::2]), y_max) | |
y_min = min(np.min(x_sorted_boxes[idx]['box'][1::2]), y_min) | |
merged_box['box'] = [ | |
x_min, y_min, x_max, y_min, x_max, y_max, x_min, y_max | |
] | |
merged_boxes.append(merged_box) | |
return merged_boxes | |
def bezier2polygon(bezier_points: np.ndarray, | |
num_sample: int = 20) -> List[np.ndarray]: | |
# TODO check test later | |
"""Sample points from the boundary of a polygon enclosed by two Bezier | |
curves, which are controlled by ``bezier_points``. | |
Args: | |
bezier_points (ndarray): A :math:`(2, 4, 2)` array of 8 Bezeir points | |
or its equalivance. The first 4 points control the curve at one | |
side and the last four control the other side. | |
num_sample (int): The number of sample points at each Bezeir curve. | |
Defaults to 20. | |
Returns: | |
list[ndarray]: A list of 2*num_sample points representing the polygon | |
extracted from Bezier curves. | |
Warning: | |
The points are not guaranteed to be ordered. Please use | |
:func:`mmocr.utils.sort_points` to sort points if necessary. | |
""" | |
assert num_sample > 0, 'The sampling number should greater than 0' | |
bezier_points = np.asarray(bezier_points) | |
assert np.prod( | |
bezier_points.shape) == 16, 'Need 8 Bezier control points to continue!' | |
bezier = bezier_points.reshape(2, 4, 2).transpose(0, 2, 1).reshape(4, 4) | |
u = np.linspace(0, 1, num_sample) | |
points = np.outer((1 - u) ** 3, bezier[:, 0]) \ | |
+ np.outer(3 * u * ((1 - u) ** 2), bezier[:, 1]) \ | |
+ np.outer(3 * (u ** 2) * (1 - u), bezier[:, 2]) \ | |
+ np.outer(u ** 3, bezier[:, 3]) | |
# Convert points to polygon | |
points = np.concatenate((points[:, :2], points[:, 2:]), axis=0) | |
return points.tolist() | |
def sort_vertex(points_x, points_y): | |
# TODO Add typehints & docstring & test | |
"""Sort box vertices in clockwise order from left-top first. | |
Args: | |
points_x (list[float]): x of four vertices. | |
points_y (list[float]): y of four vertices. | |
Returns: | |
sorted_points_x (list[float]): x of sorted four vertices. | |
sorted_points_y (list[float]): y of sorted four vertices. | |
""" | |
assert is_type_list(points_x, (float, int)) | |
assert is_type_list(points_y, (float, int)) | |
assert len(points_x) == 4 | |
assert len(points_y) == 4 | |
vertices = np.stack((points_x, points_y), axis=-1).astype(np.float32) | |
vertices = _sort_vertex(vertices) | |
sorted_points_x = list(vertices[:, 0]) | |
sorted_points_y = list(vertices[:, 1]) | |
return sorted_points_x, sorted_points_y | |
def _sort_vertex(vertices): | |
# TODO Add typehints & docstring & test | |
assert vertices.ndim == 2 | |
assert vertices.shape[-1] == 2 | |
N = vertices.shape[0] | |
if N == 0: | |
return vertices | |
center = np.mean(vertices, axis=0) | |
directions = vertices - center | |
angles = np.arctan2(directions[:, 1], directions[:, 0]) | |
sort_idx = np.argsort(angles) | |
vertices = vertices[sort_idx] | |
left_top = np.min(vertices, axis=0) | |
dists = np.linalg.norm(left_top - vertices, axis=-1, ord=2) | |
lefttop_idx = np.argmin(dists) | |
indexes = (np.arange(N, dtype=np.int_) + lefttop_idx) % N | |
return vertices[indexes] | |
def sort_vertex8(points): | |
# TODO Add typehints & docstring & test | |
"""Sort vertex with 8 points [x1 y1 x2 y2 x3 y3 x4 y4]""" | |
assert len(points) == 8 | |
vertices = _sort_vertex(np.array(points, dtype=np.float32).reshape(-1, 2)) | |
sorted_box = list(vertices.flatten()) | |
return sorted_box | |
def bbox_center_distance(box1: ArrayLike, box2: ArrayLike) -> float: | |
"""Calculate the distance between the center points of two bounding boxes. | |
Args: | |
box1 (ArrayLike): The first bounding box | |
represented in [x1, y1, x2, y2]. | |
box2 (ArrayLike): The second bounding box | |
represented in [x1, y1, x2, y2]. | |
Returns: | |
float: The distance between the center points of two bounding boxes. | |
""" | |
return point_distance(points_center(box1), points_center(box2)) | |
def bbox_diag_distance(box: ArrayLike) -> float: | |
"""Calculate the diagonal length of a bounding box (distance between the | |
top-left and bottom-right). | |
Args: | |
box (ArrayLike): The bounding box represented in | |
[x1, y1, x2, y2, x3, y3, x4, y4] or [x1, y1, x2, y2]. | |
Returns: | |
float: The diagonal length of the bounding box. | |
""" | |
box = np.array(box, dtype=np.float32) | |
assert (box.size == 8 or box.size == 4) | |
if box.size == 8: | |
diag = point_distance(box[0:2], box[4:6]) | |
elif box.size == 4: | |
diag = point_distance(box[0:2], box[2:4]) | |
return diag | |
def bbox_jitter(points_x, points_y, jitter_ratio_x=0.5, jitter_ratio_y=0.1): | |
"""Jitter on the coordinates of bounding box. | |
Args: | |
points_x (list[float | int]): List of y for four vertices. | |
points_y (list[float | int]): List of x for four vertices. | |
jitter_ratio_x (float): Horizontal jitter ratio relative to the height. | |
jitter_ratio_y (float): Vertical jitter ratio relative to the height. | |
""" | |
assert len(points_x) == 4 | |
assert len(points_y) == 4 | |
assert isinstance(jitter_ratio_x, float) | |
assert isinstance(jitter_ratio_y, float) | |
assert 0 <= jitter_ratio_x < 1 | |
assert 0 <= jitter_ratio_y < 1 | |
points = [Point(points_x[i], points_y[i]) for i in range(4)] | |
line_list = [ | |
LineString([points[i], points[i + 1 if i < 3 else 0]]) | |
for i in range(4) | |
] | |
tmp_h = max(line_list[1].length, line_list[3].length) | |
for i in range(4): | |
jitter_pixel_x = (np.random.rand() - 0.5) * 2 * jitter_ratio_x * tmp_h | |
jitter_pixel_y = (np.random.rand() - 0.5) * 2 * jitter_ratio_y * tmp_h | |
points_x[i] += jitter_pixel_x | |
points_y[i] += jitter_pixel_y | |