|
from torch import nn |
|
|
|
class ClassificationModel(nn.Module): |
|
def __init__(self, base_model): |
|
super(ClassificationModel, self).__init__() |
|
self.base_model = base_model |
|
self.classifier = nn.Sequential( |
|
nn.Linear(768, 256), |
|
nn.ReLU(), |
|
nn.Dropout(0.3), |
|
nn.Linear(256, 8), |
|
nn.LogSoftmax(dim=1) |
|
) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
hidden_states = self.base_model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state |
|
cls_output = hidden_states[:, 0, :] |
|
probs = self.classifier(cls_output) |
|
return probs |
|
|