MostoHF's picture
Update app.py
2472ad0 verified
import streamlit as st
import torch
from torch import nn
import csv
from transformers import AutoModel, AutoTokenizer
from huggingface_hub import hf_hub_download
from model import ClassificationModel
st.set_page_config(page_title="Article Theme Classifier", layout="centered")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_LENGTH = 512
@st.cache_resource
def get_model():
base_model = AutoModel.from_pretrained("distilbert-base-cased")
class_model = ClassificationModel(base_model)
weights_path = hf_hub_download(
repo_id="MostoHF/TunedDistillBertCased",
filename="pytorch_model.bin"
)
state_dict = torch.load(weights_path, map_location=device)
class_model.load_state_dict(state_dict)
class_model.to(device)
class_model.eval()
return class_model
@st.cache_resource
def get_tokenizer():
return AutoTokenizer.from_pretrained("distilbert-base-cased")
@st.cache_resource
def get_ind_to_cat():
ind_to_category_copy = {}
with open('ind_to_category.csv', mode='r', newline='') as f:
reader = csv.reader(f)
next(reader) # skip header
for key, value in reader:
ind_to_category_copy[int(key)] = value # ключи — int
return ind_to_category_copy
class_model = get_model()
tokenizer = get_tokenizer()
ind_to_category = get_ind_to_cat()
def inference(title, abstract, threshold=0.95):
cur_elem = title + '@' + abstract
encoding = tokenizer(cur_elem, padding="max_length", truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
res_probs = torch.exp(class_model(input_ids, attention_mask))
probs = res_probs.squeeze(0) # (8,)
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
total = 0.0
selected_indices = []
selected_probs = []
for prob, idx in zip(sorted_probs, sorted_indices):
total += prob.item()
selected_indices.append(idx.item())
selected_probs.append(prob.item())
if total >= threshold:
break
ans_themes = [ind_to_category[idx] for idx in selected_indices]
return ans_themes, selected_probs
# ------------------- Streamlit UI -------------------
st.title("📄 Article Theme Classifier")
title = st.text_input("Title", value="Введите title...")
abstract = st.text_input("Abstract", value="Введите abstract...")
threshold = st.slider("Выберите cumulative probability threshold", 0.0, 1.0, step=0.01, value=0.95)
if st.button("Submit"):
if title or abstract:
st.success(f"✅ Title")
st.info(f"📑 Abstract")
themes, probs = inference(title, abstract, threshold)
st.subheader("Predicted Themes:")
for i in range(len(themes)):
st.write(f"**{themes[i]}** — {probs[i]:.4f}")
else:
st.warning("❌ Please fill in at least one of the fields.")