NLP_LSTM_team / models /p_logreg.py
MossyHead's picture
add
5b4ebfb
raw
history blame contribute delete
428 Bytes
from joblib import load
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import pickle
with open('models/logreg_vec.pkl', 'rb') as f:
vectorizer = pickle.load(f)
# Load the model
classifier = load('models/logreg_model.joblib')
def predict_tfidf(text):
text_review_vectorized = vectorizer.transform([text])
prediction = classifier.predict(text_review_vectorized)
return prediction