Spaces:
Sleeping
Sleeping
Gabriel
commited on
Commit
·
0744724
1
Parent(s):
7dedc87
debug
Browse files
app.py
CHANGED
@@ -21,25 +21,42 @@ def calc_preds(coeffs, indeps):
|
|
21 |
res = res @ l + consts[i]
|
22 |
if i != n-1:
|
23 |
res = F.relu(res)
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def main(job_title, company_name, company_desc, job_desc,
|
28 |
job_requirement, salary, location, employment_type,
|
29 |
department):
|
30 |
-
|
31 |
-
df.loc[len(df)] = [job_title, company_name, company_desc, job_desc,
|
32 |
job_requirement, salary, location, employment_type,
|
33 |
department]
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
t_indep = tensor(df[indep_cols].values, dtype=torch.float)
|
39 |
-
vals,indices = t_indep.max(dim=0)
|
40 |
-
t_indep = t_indep / vals
|
41 |
-
# return calc_preds(coeffs, t_indep)
|
42 |
-
return df.loc
|
43 |
|
44 |
iface = gr.Interface(
|
45 |
fn=main,
|
|
|
21 |
res = res @ l + consts[i]
|
22 |
if i != n-1:
|
23 |
res = F.relu(res)
|
24 |
+
if torch.sigmoid(res) > 0.5:
|
25 |
+
return 'Real Job Post'
|
26 |
+
else:
|
27 |
+
return 'Fake Job Post'
|
28 |
+
# return torch.sigmoid(res)
|
29 |
+
|
30 |
+
|
31 |
+
def preprocess_input(input_data):
|
32 |
+
df = pd.DataFrame([input_data], columns=indep_cols)
|
33 |
+
|
34 |
+
for column in df.columns:
|
35 |
+
if df[column].dtype == 'O': # 'O' stands for object type (string)
|
36 |
+
df[column] = label_encoder.fit_transform(df[column])
|
37 |
+
else:
|
38 |
+
df[column] = df[column].astype(float)
|
39 |
+
|
40 |
+
t_indep = tensor(df[indep_cols].values, dtype=torch.float)
|
41 |
+
vals, indices = t_indep.max(dim=0)
|
42 |
+
t_indep = t_indep / vals
|
43 |
+
|
44 |
+
return t_indep
|
45 |
+
|
46 |
+
def main(inputs):
|
47 |
+
t_indep = preprocess_input(inputs)
|
48 |
+
return calc_preds(coeffs, t_indep)
|
49 |
|
50 |
def main(job_title, company_name, company_desc, job_desc,
|
51 |
job_requirement, salary, location, employment_type,
|
52 |
department):
|
53 |
+
inputs = [job_title, company_name, company_desc, job_desc,
|
|
|
54 |
job_requirement, salary, location, employment_type,
|
55 |
department]
|
56 |
|
57 |
+
t_indep = preprocess_input(inputs)
|
58 |
+
|
59 |
+
return calc_preds(coeffs, t_indep)
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
iface = gr.Interface(
|
62 |
fn=main,
|