Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from torch import tensor | |
| from torch.nn import functional as F | |
| from sklearn.preprocessing import LabelEncoder | |
| import pandas as pd | |
| label_encoder = LabelEncoder() | |
| coeffs = torch.load('fakejobposts.pth') | |
| indep_cols = ['job_title', 'company_name', 'company_desc', 'job_desc', | |
| 'job_requirement', 'salary', 'location', 'employment_type', | |
| 'department'] | |
| def calc_preds(coeffs, indeps): | |
| layers, consts = coeffs | |
| n = len(layers) | |
| res = indeps | |
| for i, l in enumerate(layers): | |
| res = res @ l + consts[i] | |
| if i != n-1: | |
| res = F.relu(res) | |
| if torch.sigmoid(res) > 0.5: | |
| return 'Real Job Post' | |
| else: | |
| return 'Fake Job Post' | |
| def main(job_title, company_name, company_desc, job_desc, | |
| job_requirement, salary, location, employment_type, | |
| department): | |
| df = pd.DataFrame(columns=indep_cols) | |
| df.loc[0] = [job_title, company_name, company_desc, job_desc, | |
| job_requirement, salary, location, employment_type, | |
| department] | |
| for column in df.columns: | |
| df[column] = label_encoder.fit_transform(df[column]) | |
| t_indep = tensor(df[indep_cols].values, dtype=torch.float) | |
| vals,indices = t_indep.max(dim=0) | |
| t_indep = t_indep / vals | |
| return calc_preds(coeffs, t_indep) | |
| iface = gr.Interface( | |
| fn=main, | |
| inputs=[gr.Textbox(label="Job title"), gr.Textbox(label="Company name"), | |
| gr.Textbox(label="Company description"), gr.Textbox(label="Job description"), | |
| gr.Textbox(label="Job Requirements"), gr.Textbox(label="Salary"), | |
| gr.Textbox(label="Location"), gr.Textbox(label="Employment Type"), | |
| gr.Textbox(label="Department")], | |
| outputs="text", | |
| title="Job posting identifier", | |
| description="Identifies job posts as real or fake" | |
| ) | |
| iface.launch(share=True) |